

Deliverable D3.3

Implementations and integrations

towards EVOLVED-5G

framework realisation (final)

Editor R. Marco Alaez (ATOS)

Contributors ATOS, NCSRD, UMA, FOG, MAG, TID, UPV, INTRA,

LNV

Version 1.0

Date April 31st, 2023

Distribution PUBLIC (PU)

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

DISCLAIMER
This document contains confidential information reserved for the partners of the

EVOLVED-5G ("Experimentation and Validation Openness for Longterm evolution of

VErtical inDustries in 5G era and beyond) Consortium and is subject to the confidentiality

obligations set out in the Grant Agreement 101016608 and to the EVOLVED-5G

Consortium Agreement.

Neither this document nor the information contained herein shall be used, copied,

duplicated, reproduced, modified, or communicated by any means to any third party, in

whole or in parts, except with prior written consent of the EVOLVED-5G Consortium.

In such case, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced. In the event of infringement,

the consortium reserves the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view

of the European Commission. Neither the EVOLVED-5G Consortium as a whole, nor a

certain party of the EVOLVED-5G Consortium warrant that the information contained in

this document is suitable for use, nor that the use of the information is accurate or free

from risk and accepts no liability for loss or damage suffered by any person using this

information.

The information in this document is provided as is and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

REVISION HISTORY

Revision Date Responsible Comment

0.1 March 13th 2023 R. Marco (ATOS) ToC

0.2 April 14th 2023 R. Marco (ATOS) Finished

contributions

0.3 April 19th 2023 R. Marco (ATOS) Finished

internal review

0.4 April 25th 2023 R. Marco (ATOS) Internal review

comments

addressed

0.6 April 28th 2023 R. Marco (ATOS) SC review

0.7 May 10th 2023 R. Marco (ATOS) Final review

0.8 May 11th 2023 R. Marco (ATOS) Final version

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

LIST OF AUTHORS

Partner Partner Name & Surname

ATOS ATOS IT SOLUTIONS AND

SERVICES IBERIA SL

Ricardo Marco

Sonia Castro

MAG MAGGIOLI SPA Yannis Karadimas,

Alexandros Tzoumas

UMA UNIVERSIDAD DE MÁLAGA Bruno García

García

Francisco Luque

Schempp

Jorge Márquez

Ortega

Mª del Mar Moreno

Mª del Mar Gallardo

Laura Panizo Jaime

Pedro Merino

Gomez

NCSRD NATIONAL CENTER FOR SCIENTIFIC

RESEARCH "DEMOKRITOS"

Dimitrios Fragkos,

George

Makropoulos,

Harilaos Koumaras,

Anastasios Gogos

UPV UNIVERSITAT POLITECNICA DE

VALENCIA

Regel González

Usach

FOGUS FOGUS INNOVATIONS & SERVICES

P.C.

Dimitris Tsolkas

TID TELEFONICA INVESTIGACION Y

DESARROLLO SA

David Artuñedo

Javier Garcia

INTRA INTRASOFT INTERNATIONAL SA Angela Dimitriou

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

GLOSSARY

Abbreviations/Acronym Description

3GPP Third Generation Partnership Project

5G-NPN 5G Non-Public Network

5GS 5G System

AEF API Exposing Function

AF Application Function

AMF Mobility Management Function

API Application Programming Interface

AUSF Authentication Server Function

BBU BaseBand Unit

CAPIF Common API Framework

CCF CAPIF Core Function

CI/CD Continuous Integration and Continuous Deployment

CLI Command Line Interface

CNC Centralized Network Configuration

CUC Centralized User Configuration

ELCM Experiment Life-Cycle Manager

FOF Factories of the Future

HTTPS Hypertext Transfer Protocol Secure

KPIs Key Performance Indicator

LTE Long Term Evolution

MITM Man in the Middle

NEF Network Exposure Function

Network App Network Application

NSA Non-StandAlone

PKI Public Key Infrastructure

PSK Pre Shared Key

RAN Radio Access Network

RRU Remote Radio Unit

SA StandAlone

SDK Software Development Kit

SMF Session Management Function

SQL Structured Query Language

SSH Secure Shell

SUPI Subscription Permanent Identifier

TSN Time Sensitive Network

UDM User Data Management

UE User Equipment

VNFs Virtual Network Functions

XSS Cross Site Scripting

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

EXECUTIVE SUMMARY
This document contains information, which is proprietary to the EVOLVED-5G

("Experimentation and Validation Openness for Longterm evolution of VErtical

inDustries in 5G era and beyond) Consortium that is subject to the rights and obligations

and to the terms and conditions applicable to the Grant Agreement number: 101016608.

The action of the EVOLVED-5G Consortium is funded by the European Commission.

Neither this document nor the information contained herein shall be used, copied,

duplicated, reproduced, modified, or communicated by any means to any third party, in

whole or in parts, except with prior written consent of the EVOLVED-5G Consortium.

In such case, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced. In the event of infringement,

the consortium reserves the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view

of the European Commission. Neither the EVOLVED-5G Consortium as a whole, nor a

certain party of the EVOLVED-5G Consortium warrant that the information contained in

this document is suitable for use, nor that the use of the information is accurate or free

from risk and accepts no liability for loss or damage suffered by any person using this

information.

The information in this document is provided as is and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

TABLE OF CONTENTS
TABLE OF CONTENTS .. 6

1 INTRODUCTION ... 1

1.1 Purpose ... 1

1.2 Target audience .. 1

1.3 Structure ... 1

2 The EVOLVED-5G Facility ... 2

2.1 General description ... 2

2.2 Network Apps and implementation Evolution .. 3

2.3 Architecture Evolution .. 4

3 Community .. 5

3.1 EVOLVED-5G Wiki ... 6

3.1.1 Component Description .. 8

3.1.1.1 Wiki Frontend ... 8

3.1.1.2 Wiki Backend ... 10

3.1.2 Wiki Implementation .. 11

3.1.3 Wiki Security ... 11

4 Workspace Environment ... 13

4.1 Component and Workflow description ... 13

4.1.1 Development tools .. 15

4.1.1.1 Network App Template ... 15

4.1.1.2 SDK .. 15

4.1.1.3 Open repositories ... 16

4.1.1.4 Dummy Network Application .. 16

4.1.2 Verification tools – CI/CD Pipelines ... 16

4.1.2.1 SonarQube .. 16

4.1.2.2 Nmap (Network App open ports) .. 17

4.1.2.3 Trivy .. 17

4.1.2.4 Build, deploy, destroy ... 17

4.1.2.5 CAPIF ... 18

4.1.2.6 NEF .. 18

4.1.2.7 TSN .. 18

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

4.1.2.8 Robot Framework ... 19

4.2 Workspace Implementation ... 19

4.2.1 Development Phase .. 20

4.2.1.1 Network App template ... 20

4.2.1.2 SDK .. 21

4.2.1.3 Dummy Network Application .. 26

4.2.2 Verification Phase ... 27

4.2.2.1 Network App-CAPIF Interaction .. 30

4.2.2.2 Network App-NEF Emulator Interaction ... 31

4.2.2.3 Network App-TSN APIs Interaction ... 32

4.3 Security ... 34

4.3.1 Development Phase .. 34

4.3.2 Verification Phase ... 34

4.3.2.1 Security in Jenkins ... 35

4.3.2.2 Security in Open Repository .. 35

4.3.2.3 Security in OpenShift .. 35

4.3.2.4 Security in NEF .. 36

4.3.2.5 Security in CAPIF ... 37

4.3.2.6 Security in TSN .. 38

5 Validation environment ... 38

5.1 Component description .. 39

5.2 Implementation .. 40

5.2.1 Validation Phase .. 40

5.2.1.1 ELCM ... 43

5.2.1.2 CI/CD services - Validation environment Interaction 44

5.3 Security ... 46

6 EVOLVED-5G Infrastructure Evolution ... 46

6.1 Component Description .. 46

6.1.1 Athens platform evolution .. 46

6.1.1.1 Core Network .. 47

6.1.1.2 5G RAN .. 47

6.1.1.3 Kubernetes cluster implementation ... 48

6.1.2 Málaga platform evolution ... 49

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

6.1.2.1 Kubernetes cluster implementation ... 49

6.1.2.2 Time-Sensitive Networking (TSN) over 5G .. 49

6.1.3 CAPIF Core Function Tool evolution.. 51

6.1.3.1 CAPIF Core Function Tool implementation ... 52

6.1.4 TSN FrontEnd .. 54

6.1.4.1 TSN FrontEnd implementation ... 54

6.1.5 NEF Emulator evolution .. 56

6.1.5.1 Companion application ... 56

6.1.5.2 NEF Emulator Implementation ... 57

7 Conclusion ... 59

REFERENCES .. 60

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

LIST OF FIGURES
Figure 1 EVOLVED-5G reference architecture ... 5

Figure 2 EVOLVED-5G Wiki .. 7

Figure 3 Topics and structure of contents of the EVOLVED-5G Wiki 8

Figure 4 EVOLVED-5G Wiki public-facing front-end view ... 9

Figure 5 Main public-facing front-end elements of the EVOLVED-5G Wiki 10

Figure 6 EVOLVED-5G Wiki administration dashboard .. 10

Figure 7 Workspace functional blocks ... 13

Figure 8 Workspace workflow ... 14

Figure 9 Fully centralized TSN network architecture - IEEE 802.1Qcc 19

Figure 10 Old Network App structure vs New Network App structure 20

Figure 11 Old Inputs vs New inputs to create a Network App....................................... 21

Figure 12 Location Subscriber - Subscribe to monitor location changes 23

Figure 13 Location Subscriber - Request location for a given device............................ 23

Figure 14 ConnectionMonitor- Subscribe monitor network connectivity...................... 24

Figure 15 QoS Awareness- Subscribe to monitor changes to the QoS thresholds 25

Figure 16 List Dummy Network App files ... 27

Figure 17 NEF verification pipeline (part I) .. 28

Figure 18 NEF verification pipeline (part II) .. 28

Figure 19 TSN verification pipeline .. 29

Figure 20 Parameterization of the NEF verification pipeline... 29

Figure 21 CAPIF invocation in the verification pipelines .. 31

Figure 22 NEF invocation in the verification pipeline ... 32

Figure 23 Implementation of the TSN testing plan in the TSN verification pipeline 33

Figure 24 Jenkins Market Share numbers .. 35

Figure 25 OpenShift console showing User Identity (upper right corner) and project

permissions ... 36

Figure 26 Validation Environment architecture ... 39

Figure 27 Validation workflow .. 42

Figure 28 Ericsson 5G RAN ... 48

Figure 29 Athens Kubernetes Cluster ... 49

Figure 30 TSN over 5G testbed at the Málaga platform .. 50

Figure 31 FT980-WW, One Plus 11 5G and Google Pixel 7 5G 51

Figure 32 NGINX implements TLS mutual authentication and routes API requests to

CAPIF Core Function Services .. 53

Figure 33 Companion App ... 57

Figure 34 NEF Emulator .. 58

LIST OF TABLES
Table 1 SDK versions mapped with features ... 3

Table 2 NEF Security features.. 36

Table 3 Open APIs experiment management endpoints .. 45

Table 4 Open APIs result retrieval endpoints ... 45

Table 5 TSN FrontEnd API endpoints ... 54

Table 6 TSN AF API endpoints ... 55

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

1

1 INTRODUCTION

1.1 PURPOSE
This deliverable is the third of a series of four reports to be delivered by WP3. The main

goal of this third report, titled “D3.3 Implementations and integrations towards

EVOLVED-5G framework realization (final)”is threefold:

• To provide a comprehensive view on the final version of the EVOLVED-5G

facility, focusing on the final releases of the components and tools implemented

during the lifetime of the project within WP3 (30 months), including TSN

capabilities.

• To describe final implementation details of the development, verification, and

validation environments related to the lifecycle of the Network Apps in the

EVOLVED-5G facility, including tools and technologies used as well as an

updated version of the architecture.

• Detail the evolution of the infrastructure of both EVOLVED-5G sites, Athens and

Málaga.

D3.3 describes final outcomes for three out of the four different tasks that compose WP3:

• “T3.1 Production of the Workspace and the Related Verification Tools”, focused

on the SDK tools developed for the creation and verification of Network Apps.

• “T3.2 Development of Network App Validation Tools and Open Repository”,

related to the store and validation of Network Apps

• “T3.3 Overall Framework Integration and 5G Infrastructure Evolution”, devoted,

as indicated by its name, to the integration of all environments that compose the

EVOLVED-5G facility on top of the available 5G infrastructure.

And it complements previous work delivered in D3.1. “D3.1 Implementations and

integrations towards EVOLVED-5G framework realization (intermediate)”, submitted in

M12.

1.2 TARGET AUDIENCE
As its counterpart D3.1, this deliverable has been conceived to be public, as its intention

is to provide information about the EVOLVED-5G facility to a broad variety of research

individuals and communities. Hence, the target audience is the same as described in D3.1:

Project Consortium; the funding European Commission organisation; the Industry 4.0

vertical and, in particular, Industry 4.0 developers and Factories of the Future (FoF)

vertical groups; any other vertical industries and groups that may benefit from 5G

technologies; the scientific audience; and the general public.

1.3 STRUCTURE
The deliverable is organized as follows:

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

2

• Section 1. Introduction. It presents the deliverable, providing information about

its target audience, purpose, and structure.

• Section 2. The EVOLVED-5G Facility. It provides a general view of the

EVOLVED-5G facility, presents the latest version of its architecture, and

describes the evolution of the conceptualization and implementation of the

Network Apps.

• Section 3. Community. It provides information about the different tools that have

been developed by the project with the goal of creating a community around the

EVOLVED-5G technical vision and outcomes: the Wiki, the Forum, and the

Library.

• Section 4. Workspace. It is dedicated to the description of the workspace

environment, that integrates two different phases of the Network App lifecycle:

development and verification. For each phase, a description of the tools that

compose it, their implementation and security aspects are provided.

• Section 5. Validation. It is focused on the next phase of the Network App

lifecycle: validation. As in the previous section, it describes its tools, their

implementation, and security-related aspects.

• Section 6. 5G Infrastructure evolution. It provides an overview about how the

5G infrastructure that supports the EVOLVED-5G facility, both in Málaga and

Athens, has evolved since the submission of deliverable D3.1. This includes a

description about the implementation of the Kubernetes clusters in both sites, the

improvement of the CAPIF Core Function Tool and the NEF Emulator, the TSN

Application Function.

• Section 7. Conclusion. It closes the report with final impressions, main

conclusions and future work.

2 THE EVOLVED-5G FACILITY

2.1 GENERAL DESCRIPTION
The final architectural view (including all the relations between environments,

components and tools) that realizes the EVOLVED-5G facility was previously depicted

in Deliverable D2.3 “Overall framework for NetApp development and evaluation” [46],

which was successfully submitted in M21 (October 2022). Thus, in this deliverable the

architectural upgrades only focus on the delta created after D2.3 submission, including

adaptations, extensions of some additional functionalities, and the addition of TSN

capabilities. These updates are indicated in Section 2.3, by providing the most recent and

complete architectural diagram of the EVOLVED-5G approach (Figure 1). In line with

the previous versions of the architecture, EVOLVED-5G has been keeping active all the

design principles previously followed in WP2 for the conceptualization, creation and

refinement of the architecture:

- System components are arranged at different levels of abstraction, that create the

compositional and structural logic of the EVOLVED-5G Architecture. From

abstract to concrete, we find:

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

3

o Tier 1 – Environments (Red): They refer to larger bundles of components

and tools that either support a specific phase of the Network App lifecycle

or give support to other environments.

o Tier 2 – Functional Blocks (Green): Encapsulate related functionalities

that are part of an environments.

o Tier 3 – Tools and Functionalities (Brown): Are components that support

de implementation of the different capabilities.

- The environments are associated with the different phases of the Network App

lifecycle. These are the Workspace (development and verification), Validation

Environment (validation), Certification Environment (certification), and

Marketplace. The 5G-NPN is an additional environment that supports both the

Validation and Certification environments.

- All the environments are interconnected with three central elements: The CI/CD

services, the Open Repository, and the Community.

Further details and specifics about the conceptualization of the architecture and relations

between the three tiers can be found in Deliverable D2.3, Section 2. This includes the

description of each environment and component, the indicative usage scenario and a

description of the integration design. This information is still relevant and up-to-date,

with the exception of the small changes described in the present deliverable (Section 2.3.)

2.2 NETWORK APPS AND IMPLEMENTATION EVOLUTION
Previous deliverables D2.1 [57], D2.2 [51], and D3.1 [15] described the concept of the

Network App, which has since undergone updates to ensure that it aligns with all the

components of the EVOLVED-5G ecosystem. The main goal of the Network App is to

communicate securely and efficiently with the 5G Core, specifically with the NEF

Emulator and more recently, with the TSN Frontend, both through the CAPIF in a secured

and standardised way. To achieve this, the Network App utilises the SDK libraries

provided in the project to establish a communication link with the components. In

addition to communication, the Network App developers also use a CLI tool to navigate

through the different stages of the CI/CD framework, including verification, validation,

and certification. The final objective is to publish the certified Network Apps in the

EVOLVED-5G Marketplace, which is a platform for sharing and distributing 5G

applications and will be further described in the last deliverable of WP3, D3.4.

It is important to note that the SDK developed in EVOLVED-5G is not a single version,

but rather a collection of different versions of the libraries that have been updated and

upgraded throughout the lifetime of the project. Indeed, it is the software development

conceived as an iterative process that involves continuous improvements and updates

based on new requirements, feedback, and bug fixes. The different versions of the SDK

libraries used by the Network App developers are mapped with specific features and

functionalities as presented in Table 1.

Table 1 SDK versions mapped with features

SDK versions Features Involved

SDK 0.6.0 • Network App template

• CLI

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

4

SDK v0.8.9 • CAPIF v2.1

• NEF v1.6.2

SDK v1.0.0 • CAPIF v3.0

• NEF v2.0

• TSN API v1.0

SDK v1.1 • CAPIF 3.1

• NEF v2.1

• TSN API v.1.0

• Companion application v1.0

As it can be seen from Table 1 there has been different releases of the SDK from the first

one (v0.6.0) included in D3.1 [15] up to the actual v1.1. Table 1 highlights the main

releases that have been used by developers. In between, different versions have been

released [61] as well, fixing bugs, including different features gathered from WP4 and

WP5 requirements. The initial version just included the creation of the Network App

repository in GitHub (CLI + Network App template) while the following releases have

included more features such as, SDK Libraries compatible with first NEF (v1.6.2) and

CAPIF (v2.1) versions, Network App verification tests for NEF and CAPIF, reaching

finally the latest version of the SDK v1.1 which provides compatibility with latest version

of CAPIF, NEF and companion application, also new libraries for TSN. The progress is

showcasing the delta from an initial and basic version, until the maturity level reached

integrating all the tools developed in WP3 and consequently extending their utilisation

not only to Development and Verification phase (see Section 4) but also to Validation

phase (see Section 5).

The evolution of the development tools is presented in the following sections, which

includes the SDK libraries, the dummy Network App, and CLI tools in Section 4.1.1. The

evolution of the components can be found in Section 6.1.3 for CAPIF, Section 6.1.5 for

NEF Emulator, and Section 6.1.4 for TSN FrontEnd. The companion application is

presented in Section 6.1.5.1. Finally, Section 4.2.2 covers the verification phase that

presents the interaction between the Network App and CAPIF, NEF, and TSN.

2.3 ARCHITECTURE EVOLUTION
This section gives an overview on those changes undertaken in the final architecture of

the EVOLVED-5G described in WP2. These changes respond to small variations

introduced in the 5G-NPN environment (i.e., the exposure of TSN capabilities and

refinements in Exposure Services).

The Exposure Services are arranged with the CAPIF Services in the front of the inbound

API communication, in order to emphasize the role of CAPIF as frontend for both the

NEF Services and the TSN FrontEnd.

The TSN FrontEnd is a new component that is part of the TSN infrastructure inside the

5G-NPN. This component acts as a standardized entry point for the configuration of the

TSN capabilities. The TSN FrontEnd makes use of an internal API to communicate with

the TSN AF (not depicted in Figure 1, but implemented as part of the TSN over 5G

element), which is optional and platform-specific. More information about this separation

and the implementation of the TSN communication can be seen in Section 6.1.4.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

5

Finally, the radio access network has been separated in two different paths, one based on

the standard 5G NR, without deterministic communication, and another using TSN over

5G, if available.

Figure 1 EVOLVED-5G reference architecture

3 COMMUNITY
Throughout technological and business history, it has been repeatedly observed that the

generation of innovative advancements and notable technical developments is not

sufficient for their success. It is essential to reach potential users and make them familiar

with the technology product developed, the innovation involved and the product’s usage

to promote adoption. Moreover, support provision is another key factor to favour user

uptake.

In this regard, in the context of software development, the creation of a community around

it, provides multiple advantages such as significantly increased visibility, popularity and

adoption, contribution to further development and technical support for and by their

members in forums, open code repositories or other online spaces. The construction of a

community around a technical project can enable its long-term success, impact and further

continuation after the project ends by the hand of its members or key stakeholders

attracted via this community.

The EVOLVED-5G project pays attention to these facts and has a strong commitment

towards community building. In this regard, the Community block of the EVOLVED-5G

architecture is fully devoted to fostering the creation of a community of developers,

academia and other stakeholders out of the boundaries of the project.

This particular block is designed to facilitate collaboration, knowledge sharing, and

communication among project members and external stakeholders, to ultimately foster a

strong sense of community inside and outside the project and promote the continued

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

6

development and adoption of EVOLVED-5G technical innovations, in line with

objectives in WP6.

Three main components harmonize the entire community block, each responding to

different purposes but all at once supporting the creation of a community around the

technical outcomes of the project. Namely, it encompasses:

• EVOLVED-5G Wiki [1]: official centralized technical documentation site of the

EVOLVED-5G project.

• EVOLVED-5G Forum [2]: public online discussion platform where community

users can post inquiries, ideas, and opinions on various topics regarding the

EVOLVED-5G project, interacting with other members in the topic threads.

Support for technical inquiries regarding EVOLVED-5G technical topics (e.g.,

Network App development) is provided by the EVOLVED-5G community, that

includes project’s developers.

• EVOLVED-5G Library [3]: set of items related to EVOLVED-5G publicly

accessible, such as short articles, former presentations, links to some news or the

EVOLVED-5G online training courses.

The Wiki, Forum and Library refer to EVOLVED-5G technical resources and provide

spaces for describing their deployment, usage, technical aspects, give technical support

to developers and end-users, and discuss and share knowledge, best practices and

expertise on those technical artifacts. They complement the action in the direction of the

EVOLVED-5G GitHub organization and the Marketplace. Together, these elements

facilitate the creation of a vibrant and collaborative ecosystem that promotes innovation

and accelerates the development and adoption of EVOLVED-5G technical outcomes.

Section 3.1 below describes the technical aspects of the EVOLVED-5G Wiki, one of the

three entities that compose the Community architectural block. The other two

components, the EVOLVED-5G Forum and the EVOLVED-5G Library, have been

initially described in deliverable D6.1 [62] and all the implementation details will be

given in the last deliverable of WP3 (D3.4) and the next WP6 deliverables. for the Forum

and the Library respectively.

3.1 EVOLVED-5G WIKI
The EVOLVED-5G Wiki is the official centralized source of technical documentation of

the EVOLVED-5G project, containing how-to, materials for project developers and

generic public who may be interested in EVOLVED-5G as project. Indeed, it plays a

relevant role in the community building strategy of the project as it not only acts as a

centralized platform for sharing technical knowledge with developers but also for

providing key but concise information regarding the project vision and objectives.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

7

Figure 2 EVOLVED-5G Wiki

The key technical documentation is organized around different areas:

• EVOLVED-5G Vision (Network App Vision, Network App lifecycle &

EVOLVED-5G Architecture).

• Network Service Exposure (NEF and CAPIF).

• Network App Development.

• Network App Verification.

• Network App Validation.

• Network App Certification.

• Network App Publication in the EVOLVED-5G Marketplace.

Those areas are tightly related to the NetApp lifecycle phases and the different

EVOLVED-5G framework environments.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

8

Figure 3 Topics and structure of contents of the EVOLVED-5G Wiki

3.1.1 Component Description

The EVOLVED-5G Wiki is an open-source component of the EVOLVED-5G framework

that extends wiki.js engine. As a web application, the EVOLVED-5G Wiki is composed

by two main functional blocks: frontend and backend. These blocks combine to create a

powerful and versatile wiki platform that is highly usable, scalable, and performant. The

front-end component is responsible for managing the graphical user interface displayed

on the client side –on the user’s browser-, while the backend manages the server-side

operations. In following sections, a more detailed explanation of these blocks is provided.

3.1.1.1 Wiki Frontend

The different frontend components are constructed using Vue.js [4] a JavaScript

framework that provides a reactive and dynamic user interface that facilitates interaction,

access to information from the wiki, as well as content creation and update.

The wiki frontend provides a graphical interface, with features for high usability to

provide a good user experience, and a responsive design to ensure users can properly

visualize the web platform and access contents from any internet-enabled device. Layout

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

9

and website elements are automatically and dynamically adjusted, providing mobile

friendliness.

Figure 4 EVOLVED-5G Wiki public-facing front-end view

Main elements of the wiki public-facing interface are:

• Content navigation menu: displaying the tree structure of contents of the wiki,

allowing for easy navigation. This menu is always visible and accessible on the

left side of the screen, providing users a clear overview of the wiki's organization

and structure.

• Search functionality: the web interface includes a search bar that allows users to

search for specific content across all pages in the wiki.

• Main panel: displays contents regarding one specific topic selected from the

navigation menu.

• Shortcut content menu: a small panel that shows the tree structure of the topic

contents displayed on the main panel, providing a shortcut for each section and

subsection. This feature provides higher usability, and improved content

findability and access.

• Last edition date module: to provide information regarding the timeliness of the

wiki content and its last updates.

• Functionalities of page printing, sharing on user social media and bookmarking.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

10

Figure 5 Main public-facing front-end elements of the EVOLVED-5G Wiki

Moreover, in addition to the user interface, presenting wiki topics and contents online, a

dashboard for the administration of the platform provides access to specific

functionalities, regarding site configuration, monitoring, analytics and security.

Figure 6 EVOLVED-5G Wiki administration dashboard

3.1.1.2 Wiki Backend

The EVOLVED-5G Wiki backend is responsible for the server-side operations and it is

built on top of Node.js [5], an open-source, cross-platform JavaScript runtime employed

for building scalable and performant Network Apps.

This backend encompasses a PostgreSQL [6] database to store, manage and retrieve wiki

content, user data, and configuration settings, and it is capable to support other different

relational database systems (MySQL [7], MariaDB [8], and SQLite [9]).

The EVOLVED-5G Wiki exposes a REST API that allows to interact with the platform

programmatically employing GraphQL [10] queries. This API can be used to create,

update, and delete pages, retrieve key information, as well as to perform other operations.

Some important functionalities provided by the backend are:

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

11

• Content Management (creation, edition, categorization and metadata addition).

The EVOLVED-5G wiki integrates a Markdown editor.

• Git-based Version Control: the backend stores a history of all page revisions,

allowing a very advanced management of contents. It is based on Git [11], the

most important distributed version control system. Git provides version control

functionality, allowing to track changes applied to pages and roll back to previous

versions.

• User Management: for the management of users, roles, and permissions. In this

regard, the EVOLVED-5G wiki supports multiple authentication providers.

• Search engine: enabling powerful content search across the entire wiki or specific

sections.

• Integration with third-party tools such as Google Analytics [12], Slack [13], and

Trello [14].

• Wiki configuration and customization: In addition to allow for the management

of advanced configuration features, it provides a wide variety of customization

options, including themes, branding, and plugins.

• Security: the backend has built-in security features such as regular or two-factor

authentication, authorization, password policies, and IP restrictions, to ensure the

safety and confidentiality of the wiki data.

3.1.2 Wiki Implementation

The EVOLVED-5G wiki engine has been implemented upon Node.js, and the whole

component has been virtualized employing Docker technology, allowing for immediate

deployment on any OS regardless of the underlying environment and technologies.

Another remarkable implementation feature is the openness of code, as an open-source

component, following the philosophy of making software available to the community for

use, modification, and distribution.

An instance has been deployed on a dedicated server, running on the domain of

wiki.evolved-5g.eu. In addition to the wiki framework deployment, security certificates

and additional analytic functionality have been incorporated into the server to enhance

the overall system and provide improved global security and raise awareness.

This wiki instance has been properly configured and populated with technical contents

related to the EVOLVED-5G vision and technical development. Periodic content updates

are performed according to feedback from developers and project technical progress and

evolution.

3.1.3 Wiki Security

The EVOLVED-5G Wiki implements various security mechanisms to ensure

confidentiality, integrity, and availability of the data stored in the platform and shared to

the client side accessing the wiki, as well as protection against unauthorized access, theft,

misuse of data and malicious attacks to the platform and recovery features.

These mechanisms include encrypted connections (such as HTTPS), strong

authentication and authorization procedures, regular vulnerability assessments and

security audits, intrusion detection and prevention systems, data backup and recovery

plans. Additionally, the server hosting the Wiki makes use of firewalls and other advanced

security technologies to prevent and mitigate potential security threats. In more detail, the

security mechanisms implemented are:

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

12

• Authentication and authorization: EVOLVED-5G Wiki has a robust

authentication and authorization system that allows for platform content

management. Several administrative management actions can only be performed

directly on the server, which minimizes the risk of external malicious attacks.

• Support for 2FA authentication for enabling user access to private areas.

• Third-party authentication integration: the EVOLVED-5G Wiki engine

integrates third-party authentication systems such as Google, Facebook, and

GitHub. This feature facilitates user management and reduces the risk of use of

weak or compromised passwords.

• Data encryption: EVOLVED-5G Wiki employs SSL/TLS encryption to protect

the transmission of data between the server and the clients accessing the web

application, ensuring that information is kept secure in transit.

• Secure connection via HTTPS & security certificates: EVOLVED-5G Wiki

implements the HTTPS protocol that provides an additional layer of security to

protect the confidentiality and integrity of the data stored on the platform,

enabling secure connection between client and server. HTTPS encrypts all data

transmitted between clients and the server, ensuring that the data is protected

against interception and eavesdropping by attackers.

• Git-based version control: EVOLVED-5G Wiki stores historical version

information for each content displayed online and website configuration, allowing

to revert to a previous version in case an unwanted modification occurs.

• Semi-automated backup: the EVOLVED-5G wiki allows for regular backups of

the information stored on the platform, ensuring data protection, portability and

data recovery.

• Audit logging: allowing for activity monitoring and the identification of

suspicious activities.

• Protection against malicious code injection through attacks such as cross-site

scripting (XSS) or SQL injection.

• Web app uptime monitoring system: notifying in case the server is found to be

down or irresponsive.

• Firewall protection at two levels: i) at LAN level and ii) at server level, blocking

all external access attempts to unauthorised ports.

• Security configuration: the wiki platform, server and LAN access are adequately

configured for enhancing security and minimizing threats.

The previous security features protect server-client communication from security risks of

data interception, man-in-the-middle attacks (MITM), identity spoofing, data alteration,

data theft, and malicious content injection attacks such as XSS or SQL injection and

facilitates data regulatory compliance. Moreover, these measures allow for a quick

recovery of the wiki platform, stored contents and configuration.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

13

4 WORKSPACE ENVIRONMENT

4.1 COMPONENT AND WORKFLOW DESCRIPTION
The Workspace environment is responsible for the first phases in the lifecycle of a

Network App, encompassing the development phase and the verification phase. Different

functional blocks are involved, mainly represented in Figure 7.

Figure 7 Workspace functional blocks

All the functional blocks are explained in detail in Deliverable D3.1 [15] although, new

additions and improvements have been implemented such as (i) new SDK libraries, (ii)

new and improved verification tests for instance, a new verification test has been provided

for developers to verify the proper Network App functionality regarding the new TSN

functionality. Hereafter, in Figure 8 it is explained in detail the workflow from the point

of view of a developer from creation of a Network App until it is verified in the

EVOLVED-5G framework.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

14

Figure 8 Workspace workflow

As it can be seen from Figure 8 steps of the workspace wrokflow are as follows. The

development phase is orchestrated around 5 main stages while the verification phase

comprises steps 8 to 21 (both included).

Development phase:

1. Checking the SDK installation: The first step (step 1) during the Development

phase refers to checking the SDK installation in the EVOLVED-5G Wiki (as

presented in Section 3) to actually understand how the SDK should be installed in

their local environment. As explained in Deliverable D3.1 the SDK is composed

by CLI tool and the SDK libraries, to sum it up, with the CLI tool the developer

is able to create the Network App repository in GitHub as well as launching all

the commands for verifying the Network App as it will be explained in Section

4.1.1.2.1. Also, the validation pipeline can be launched through the CLI tool

(further details a will be provided in Deliverable D5.5). On the other hand, the

SDK libraries allow developers’ Network App to interact with 5G APIs providing

abstraction towards the API.

2. SDK local installation: Once the developer understands how to install the SDK

tool, then next step (step 2) is to locally install the SDK tool in order to use i) the

CLI tool for creating the Network App and ii) to use the SDK libraries in its

Network App.

3. Creation of the Network App repository: The next step (step 3) is to create the

Network App repository. This step has changed in order to ease the developers’

task and is explained in detail in Section 4.2.1.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

15

4. Upload of the Network App to the repository: the Network App will be uploaded

to the EVOLVED-5G GitHub repository [16] (step 4).

5. Final tests: the next stage in the workflow comprises steps 5, 6 and 7 which relate

to use the SDK libraries, do the necessary tests to check that the Network App

works properly locally and once everything is checked up then upload the new

code to the GitHub repository.

With this last step, the development phase is ended, and the Network App developer can

start with the verification phase to check that the Network App is fully functional within

the EVOLVED-5G framework and its considerations.

Verification phase:

The Verification phase starts with step 8. Indeed, the first step of the verification phase is

to select and execute one of the available verification tests from the CLI tool (more details

in Section 4.1.2). Then a verification pipeline is started in OpenShift environment (step 9

and 10), OpenShift will retrieve the code (step 11) and will start executing one of various

verification tests selected from the developer (step from 12 to 20). After the pipeline has

finished it will return a result to the developer informing either a success or a failure (step

20 and 21).

4.1.1 Development tools

Each functional block within the Workspace is composed by different tools that are used

in development and verification phase during the Network App lifecycle. Following

subsections provide information about each one of them.

4.1.1.1 Network App Template

The aim of the Network App Template [58] tool is to assist developers, whether they are

part of the consortium or not, by providing an example of a Network App in EVOLVED-

5G while also outlines the required folder structure. The Network App Template

complements the creation of the Network App at the development phase, as it provides

an example of how a Network App should be designed, providing folder and file structure.

As a result of the Network App Template, the developer is properly guided and able to

adequately follow the process for creating Network Apps described in the Wiki, to a real

implementation.

4.1.1.2 SDK

As mentioned in Section 4.1.1, the SDK is composed by two main tools described in the

following subsections.

4.1.1.2.1 CLI tool

It allows creating a repository in GitHub as well as locally, performing the Network App’

configuration, i.e., file and folder structure, by means of the Network App Template.

Also, it provides different commands to start and launch the different verification tests

available. Finally, it provides a command to check the status of each verification test

launched.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

16

4.1.1.2.2 SDK libraries

The SDK libraries are a set of Python classes that provide abstraction towards the 5G

APIs and enhance Network Apps with 5G capabilities, which in following phases such

as, verification, validation and certification will be tested.

4.1.1.3 Open repositories

EVOLVED-5G is composed by two open repositories as explained in Deliverable D3.1

[15] GitHub, as a code repository for Network Apps while, the artifact repository is

storing the Network App images generated during validation and certification phases.

4.1.1.4 Dummy Network Application

The Dummy Network Application is a non-functional piece of software designed to

reproduce behavioural functionalities an actual Network App must have in the

EVOLVED-5G project. It has connectivity with all the exposure services (CAPIF, NEF

and TSN) as well as it is guaranteed to successfully pass all the verification tests available.

4.1.2 Verification tools – CI/CD Pipelines

The verification of the Network Apps that are developed leveraging the EVOLVED-5G

framework is implemented through a collection of tools that are appropriately configured

by the EVOLVED-5G framework. The aim is to verify the proper development of the

Network App and its effective communication with the 5G network. These tools are

seamlessly incorporated in the EVOLVED-5G verification pipeline, which can be

invoked through the SDK by means of the CLI tool within the EVOLVED-5G workspace

in an intuitive manner. Each Network App developer, regardless of the particularities and

specific functionalities of the under-development Network App, may invoke the

verification pipeline as many times as needed to ensure that the Network App satisfies all

requirements for the next phase of the Network App lifecycle, i.e., the validation phase.

The functionalities of the Network App that are verified during the verification phase, can

be grouped in three main categories: (i) syntax analysis of the code of the Network App,

(ii) quality of the Network App docker container and (iii) proper communication

capabilities of the Network App with the 5G network. For the third category of tests, the

integration capabilities of the Network App with the NEF, CAPIF and TSN tools

developed for the purposes of the project are necessarily involved in the process. This

alleviates the developer from the requirement of an existing 5G network to execute the

tests. The details about the tools employed in the verification pipeline are described in the

following sections.

4.1.2.1 SonarQube

SonarQube tool has been described in Deliverable 5.3 [17] section 2.1.2. This tool has

been integrated into EVOLVED-5G SDK to enable developers using this tool during

development phase to get results before submitting their Network Apps for Validation. In

order to use the tool from the SDK, a pipeline has been created in the CI/CD environment.

To launch this pipeline, the following command has to be used:

evolved5g run-verification-tests --mode code_analysis --repo

REPOSITORY_NAME --user DEVELOPER_PIPELINE_USERNAME --passwd

DEVELOPER_PIPELINE_PASSWORD

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

17

Results of this command can be gathered using the command:

evolved5g check-job --id YOUR_ID --user

DEVELOPER_PIPELINE_USERNAME --passwd

DEVELOPER_PIPELINE_PASSWORD

4.1.2.2 Nmap (Network App open ports)

The Nmap is a free and open-source tool for network discovery and security auditing. In

EVOLVED-5G it has been utilised to check whether the ports declared in the dockerfile

of the Network App are being used while the Network App is deployed. It has been

integrated during building the verification tests.

4.1.2.3 Trivy

Trivy tool has been described in Deliverable 5.3 [17] section 2.1.1. This tool has been

integrated into EVOLVED-5G SDK to enable developers using this tool during

development process to get results before submitting their Network Apps to Validation.

In order to use the tool from the SDK, a pipeline has been created in the CI/CD

environment. To launch this pipeline, the following command has to be used:

evolved5g run-verification-tests --mode security_scan --repo

REPOSITORY_NAME --user DEVELOPER_PIPELINE_USERNAME --passwd

DEVELOPER_PIPELINE_PASSWORD

The commands to gather the results are described in Section 4.1.2.1.

4.1.2.4 Build, deploy, destroy

While developing their Network Apps, Developers might want to test whether their code

can be deployed as a container, considering that a container platform (Kubernetes) will

be used during Validation and Certification phases.

The first step Developers need to take is to build their Network Apps. This process

generates an image of the Network App contained in the Developers GitHub repository.

The output of this process is a containerized image that is suitable to be deployed in a

Container platform. To launch this process, the following command has to be used:

evolved5g run-verification-tests --mode build --repo

REPOSITORY_NAME --user DEVELOPER_PIPELINE_USERNAME --passwd

DEVELOPER_PIPELINE_PASSWORD

The build pipeline also offers the version network app (--version

NETWORK_APP_VERSION) as an optional parameter to be provided to the previous

command.

Once the image is built, developers might want to test deploying their Network Apps in

the Container Platform. For this purpose, the OpenShift container platform in the CICD

environment will be used. To launch this process, the following command has to be used:

evolved5g run-verification-tests --mode deploy --repo

REPOSITORY_NAME

Once the image is deployed, Developers will need to clean the environment before

repeating the Deployment test. For this purpose, the Network App needs to be destroyed

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

18

from the Container platform, so the resources can be liberated. To launch this process,

the following command has to be used:

evolved5g run-verification-tests --mode destroy --repo

REPOSITORY_NAME --user DEVELOPER_PIPELINE_USERNAME --passwd

DEVELOPER_PIPELINE_PASSWORD

Alike the build pipeline, the destroy pipeline, also offers the version network app (--

version NETWORK_APP_VERSION) as an optional parameter to be provided to the

previous command.

The commands to gather the results are described in Section 4.1.2.1.

4.1.2.5 CAPIF

CAPIF Core Function tool is an implementation of CAPIF APIs for the CAPIF Core

Function entity as defined in 3GPP TS 29.222 [18]. This tool implements a REST API

server that accepts API requests from CAPIF entities defined as API Invokers, API

Exposing Function, API Publishing Function and API Management function. It has been

developed and implemented in the context of EVOLVED-5G for the Verification,

Validation and Certification process.

To launch this process, the following command has to be used:

evolved5g run-verification-tests --mode capif_nef --repo

REPOSITORY_NAME --user DEVELOPER_PIPELINE_USERNAME --passwd

DEVELOPER_PIPELINE_PASSWORD

The commands to gather the results are described in Section 4.1.2.1.

4.1.2.6 NEF

NEF is a software component that emulates the Northbound APIs of 3GPP’s Network

Exposure Function (NEF) as defined in 3GPP TS 29.522 [19]. It follows the RESTful

paradigm and provides Network Apps with some of the internal services and capabilities

that the 5G System (5GS) offers. It has been developed and implemented in the context

of EVOLVED-5G for the Verification, Validation and Certification process.

To launch this process and gather the results, the commands described in Section 4.1.2.5

can be used.

4.1.2.7 TSN

The IEEE 802.1 Working Group has developed Time-Sensitive Networking (TSN) [20],

which is a set of standards with the intention to provide deterministic connectivity (e.g.,

bounded latency) over Ethernet networks. The time synchronization and traffic shaping

are decisive features (among others) to meet the strict requirements of the applications

such as Industrial Automation and Automotive Communications. Figure 9 presents the

fully centralized TSN network architecture, where the TSN endpoints are connected using

TSN Bridges. Furthermore, the TSN endpoints communicates the QoS requirements in

advance to the Centralized User Configuration (CUC). Then, CUC transfers this

information to the Centralized Network Configuration (CNC) which is in charge of the

TSN Bridges configuration in support of the TSN endpoints.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

19

Figure 9 Fully centralized TSN network architecture - IEEE 802.1Qcc

5G supports the possibility to expand the TSN wired networks toward wireless networks.

In addition, the combination of TSN over 5G networks has benefits like mobility and

replacing cables in the industry. The recent 3GPP standards (Rel.16) [21] (Rel.17) [22]

introduce the entities and procedures for this integration. For instance, the time

synchronization management, and the role of the 5G network components, especially the

TSN Application Function (AF), which is a key component to ensure the quality through

the end-to-end connectivity that enables the 5G network to act as a transparent TSN

Bridge[23].

To launch this process, the following command has to be used:

evolved5g run-verification-tests --mode capif_tsn --repo

REPOSITORY_NAME --user DEVELOPER_PIPELINE_USERNAME --passwd

DEVELOPER_PIPELINE_PASSWORD

The commands to gather the results are described in Section 4.1.2.1.

4.1.2.8 Robot Framework

Robot Framework [63] is an open-source automation tool with numerous capabilities of

being integrated with several external tools and, in practice, any programming language.

In a human readable manner, its syntax supports the definition of any testing plan of a

software component implemented in any language. In the workspace environment of

EVOLVED-5G, Robot Framework is employed for testing the communication of the

Network App with the 5G capabilities, i.e., NEF, CAPIF and TSN explained in the

previous sections.

4.2 WORKSPACE IMPLEMENTATION
This section describes how different tools implemented under the Workspace

environment have been carried out.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

20

4.2.1 Development Phase

This sub-section is devoted to describing the implementation that has been followed in

the Workspace environment to support the creation of a Network App from scratch.

4.2.1.1 Network App template

As mentioned in Section 4.1.1.1, the Network App Template is providing a file and folder

structure when the Network App is created. In Figure 10 it can be seen the different files

and folder provided to the developer.

Figure 10 Old Network App structure vs New Network App structure

Figure 10 has been already described in Deliverable D3.1, however, there are some

upgrades that are worth mentioning. Folders “pac” and “iac” have been removed. The

reason behind removing “pac” and “iac” folders is that Terraform [24] is not used

anymore and, instead, Helm [26] has been adopted. Now the “src” folder contains

different files and folder to provide a functional example to developers, the main files and

folders includes are the following:

• Example Network App container, which contains the example of a Network App,

including:

o Dockerfile: It stores all the commands to call on the command line to build

the Network App.

o Capif registration json file: It stores all the information related to CAPIF

such as, folder to store certificates, http and https ports among others.

o Capif onboarding folder, to store CAPIF certificates.

o A python file, simple example of the Network App using the SDK libraries

to communicate with CAPIF.

o A bash file, to register the Network App into CAPIF.

• Dockercompose file: It contains all the commands to build and deploy all the

necessary containers to start a Network App.

• README file: It explains the purpose of the repository.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

21

4.2.1.2 SDK

This subsection explains updates and improvements implemented in the CLI tool and the

SDK libraries.

4.2.1.2.1 CLI tool

The SDK CLI tool purpose is twofold, i) to create the Network App both, locally and

remotely (GitHub) and ii) to launch all the verification tests through the different pipelines

implemented in EVOLVED-5G, as it has been described in Section 4.1.2.

Regarding the first function, the updated approach is for the developer to compile a

configuration file rather than providing all the inputs manually via terminal. Also, the

inputs have been reduced significantly as it can be seen from Figure 11. Now only four

basic inputs are required from the developer, their email, the repository name, the GitHub

username and the GitHub token.

Figure 11 Old Inputs vs New inputs to create a Network App

The new command to create the Network App repository is:

evolved5g generate --config-file <path to the user

configuration file>

4.2.1.2.2 SDK libraries

The SDK libraries are a set of python classes that a) allows Network app developers to

register and authenticate their Network Apps to the CAPIF tool, b) speeds up

development for specific scenarios (ex. making calls to the 5G-API to track user devices)

c) allow “Providers” (that is API creators that want to make their APIs available to the

Network Apps) to register their resources to CAPIF (ex. the 5G-APIs exposed by the

NEF Emulator, or the TSN FrontEnd).

These libraries can be found in the following repository [27]. In order to use them, the

developers have to:

a) Import the evolved5G.sdk python module in their code.

b) Make sure they have access to a running instance of the CAPIF tool, since the

SDK interacts with the CAPIF APIs

The SDK Libraries are composed by the following classes:

CAPIFInvokerConnector: This Python class facilitates a Network App to register and

onboard itself to the CAPIF tool. The developer does not need to know the details of the

CAPIF APIs and, which calls to make to which endpoint, since this is covered by the

class itself.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

22

In the examples folder of the SDK repository a Python script [28] is provided to

demonstrate its usage. The developer only needs to provide parameters (in a configuration

file) that specify:

• A folder to store the SSL certificates required for Network App - CAPIF

communication

• The URL of the CAPIF service (port, host and protocol)

• The Network App credentials that will be used during registration

• A set of fields related with the creation of the SSL certificates.

The registration and onboarding need to happen once. Once this registration is complete,

the Network App is recognized by the CAPIF tool and has access to discover and use the

available 5G-APIs.

ServiceDiscoverer: This python class allows the Network App developer to

a) Discover services (API endpoints) exposed by CAPIF

b) Retrieve access tokens from CAPIF in order to use these APIs

Once again, the developer does not need to know the details of the CAPIF APIs, which

calls to make to which endpoint, since this is covered by the class itself. In the examples

folder of the SDK repository a python script [29] is provided to demonstrate its usage.

ServiceDiscoverer is used internally by the SDK classes: LocationSubscriber,

ConnectionMonitoring, QosAwareness and TSNManager that are explained below.

LocationSubscriber: This Python class can be used to monitor device locations, allowing

the Network App developer to receive a notification every time the device being

monitored, via the Network App, connects to a different cell. A high-level demonstration

can be seen in Figure 12 and Figure 13 below. In the examples folder of the SDK

repository a python script [30] is provided to demonstrate its usage. Using the

LocationSubscriber library in the Network App, the developer must follow the subsequent

steps:

• As a first step, it is necessary to start the NEF emulator to simulate an environment

where a user device is moving between different network cells. NEF emulator

already provides a scenario with three different user devices and four 5G cells,

simulating the movement of the user devices.

• The second step is to initialize a web server, which can either reside in the

Network App or in an external web server, to receive Event notifications from

the NEF Emulator (or the 5G API) every time the device that is monitored

changes its location (moves to another cell).

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

23

Figure 12 Location Subscriber - Subscribe to monitor location changes

There is also the option to request the Location of a given device, at any given time.

Figure 13 Location Subscriber - Request location for a given device

LocationSubscriber interacts with the CAPIF tool in order to retrieve 5G-APIs related to

location monitoring, retrieve access tokens for this APIs and make the relevant calls. All

these details are transparent for the developers, speeding up their development.

ConnectionMonitor: This Python class can be used to monitor the network connectivity

of devices. It allows a Network App developer to retrieve a notification every time the

monitored device connects (or disconnects to the network)

Consider a scenario where a Network App wants to monitor 100 devices in the 5G

Network. The Network App wants to track, at any given time how many devices are

connected to the 5G Network and how many devices are disconnected. Using

ConnectionMonitor the Network Apps can retrieve notifications by the 5G Network for

individual devices in the following situations:

• Connection is lost (for example the user device has not been connected to the 5G

network for the past 10 seconds)

• Connection is alive (for example the user device has been connected to the 5G

network for the past 10 seconds)

A high-level demonstration can be seen in Figure 14 the Figure below. In the examples

folder of the SDK repository a python script [31] is provided to demonstrate its usage.

To use the ConnectionMonitor library in the Network App, the developer must follow the

subsequent steps:

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

24

• Start the NEF emulator to simulate an environment where a user device is moving

between different network Cells. When a user device is out of range the NEF

emulator sends notifications.

• In order to retrieve notification about the location of the device, the developer

must initialize a web server to retrieve notifications from the NEF Emulator (or

the 5G-API)

Figure 14 ConnectionMonitor- Subscribe monitor network connectivity

ConnectionMonitor interacts with the CAPIF tool in order to retrieve 5G-APIs related to

network monitoring, retrieve access tokens for this APIs and make the relevant calls. All

these details are transparent for the developers, speeding up their development.

QoSAwareness: This python class can be used to control network traffic connectivity

and monitoring, allowing the Network App developer to select between Non-Guaranteed

Bit Rate (Non-GBR) and Guaranteed Bit Rate (GBR) quality flow indicators (GFIs) and

receive notifications in the Network App if the network conditions are not met.

This can result in better service experience for the Network App consumers for scenarios

like Live Streaming or Conversational Voice among others. A developer can use

QoSAwareness to:

• Establish a Guaranteed Bit Rate (GBR) QoS Flow in the Network App. In this

scenario the developer has to specify a) the QoS Flow Indicator (QFI) of interest:

Conversational Voice or Conversational Video or Discrete automation b) the

minimum allowed delay of data packages, during uplink or downlink or roundtrip

(e.g., minimum 20ms for uplink) c) any data thresholds on volume (e.g., up to 5

GB for uplink). Once the QoS subscription is established, the Network App

developer receives notifications when a) thresholds (minimum delay) cannot be

achieved b) thresholds (minimum delay) are restored or c) usage thresholds (data

volume) are exceeded.

• Establish a Non-Guaranteed Bit Rates (GBR) QoS in the Network App. In this

scenario the developer has to specify a) the QoS quality indicator of interest: Live

Streaming or TCP Base, b) the data thresholds on volume (ex. up to 5 GB for

uplink). Once the QoS subscription is established, the Network App developer

receives notifications when usage thresholds (data volume) are exceeded.

In both scenarios the Network App can use the received notifications to adjust the

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

25

application’s behaviour to improve service experience.

A high-level demonstration can be seen in Figure 15. In the examples folder of

the SDK repository a python script [32] is provided to demonstrate its usage. To

use the QoSAwareness library in the Network App, the developer must follow the

subsequent steps:

o Initialise a web server to retrieve notifications from the NEF Emulator (or

the 5G-API).

o Start NEF emulator to simulate an environment where user devices are

moving between / connecting to different network Cells. Then create a

GBR subscription for these user devices via the Network App. To facilitate

testing, the NEF emulator supports the following scenario: If two user

devices are connected to the same cell the NEF emulator will send

notifications, informing the Network App that the QoS targets cannot be

achieved. If only one user device is connected to a cell, the NEF emulator

sends notifications that the QoS targets are achieved.

Figure 15 QoS Awareness- Subscribe to monitor changes to the QoS thresholds

QoSAwareness interacts with the CAPIF tool in order to retrieve 5G-APIs related with

QoS monitoring, retrieve access tokens for this APIs and make the relevant calls. All

these details are transparent for the developers, speeding up their development.

TSNManager: This Python class allows the Network App developer to interact with the

TSN FrontEnd in order to apply Time-Sensitive Networking (TSN) standards to time-

sensitive Network Apps. It allows the configuration of certain parameters in the

underlying TSN infrastructure of the testbed.

These parameters indicate the expected QoS of the communication. More information

can be found at [33].

In the examples folder of the SDK repository a Python script [34] is provided to

demonstrate its usage. To use the TSNManager the developer must follow the subsequent

steps:

• Initialise a Python project and download evolved5G SDK as a python

dependency. Use TSNManager class

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

26

• First start CAPIF and then TSN FrontEnd to simulate an environment where you

can make calls to the TSN API.

CAPIFProviderConnector: This Python class allows a Provider (like the NEF emulator)

to interact with CAPIF. The developer that implements a provider (ex. NEF) can use this

class to register, onboard and publish endpoints to a CAPIF server. The developer does

not need to know the details of the CAPIF APIs, which calls to make to which endpoint,

since this is covered by the class it-self.

In the examples folder of the SDK repository two Python scripts are provided to

demonstrate its usage. One example [28] demonstrating how the NEF emulator can

expose its 5G-APIs to the CAPIF server

and one example [35] demonstrating how the TSN tool can expose its APIs to the CAPIF

server.

The developer using CAPIFProviderConnector only provides parameters that specify:

• A folder to store the SSL certificates required for Provider - CAPIF

communication.

• The URL of the CAPIF service (port, host and protocol).

• The Provider’s credentials that will be used during registration.

• A set of fields related with the creation of the SSL certificates.

• The description of the APIs endpoints that will be exposed via CAPIF.

The registration and onboarding need to happen once. Once this registration is complete,

the CAPIF tool can expose the related/registered 5G-APIs to the Network Apps.

CAPIFLogger: This Python class allows a Provider (like the NEF emulator) to capture

Log information to CAPIF. This allows to monitor usage from Network Apps (ex. which

API and endpoint has been called and when, the input parameters of the request and the

output parameters of the response) and performance (like the time it takes to fulfil an API

request or status codes indicating success or failures).

In the examples folder of the SDK repository a Python script [59] is provided to

demonstrate its usage.

CAPIFAuditor: This Python class allows a Provider (like the NEF Emulator) to query

the Log and retrieve information that was saved via the CAPIFLogger class. This

information can be used for further analysis like troubleshooting (identifying API calls

that fail), capacity planning (identifying API calls that have slower responses) and

analytics (calculating statistics like the most used endpoints, average response time,

Network App usage)

In the examples folder of the SDK repository a Python script [59] is provided to

demonstrate its usage.

4.2.1.3 Dummy Network Application

The existence of many entities in EVOLVED-5G ecosystem e.g., CAPIF, NEF, TSN, as

well as the plethora of APIs that a Network Application should use to communicate with

5G network, make the implementation of new Network Applications quite difficult and

demanding. For this reason, an additional Network App was developed to act as an

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

27

implementation example for the application developers, named after Dummy Network

App.

Dummy Network App, following the paradigm of all EVOLVED-5G Network

Applications, is a container-based application, including the necessary functions, written

in Python, to communicate with CAPIF, NEF and TSN, using SDK libraries. The code

can be found on GitHub [36] together with deployment instructions. An example of the

application files can be seen at Figure 16.

Dummy Network App consists of four services:

1. capif_callback_server: A Python server, using Flask framework, to accept and

process CAPIF callbacks.

2. nef_callback_server: A Python server, using Flask framework, to accept and

process NEF callbacks.

3. python_application: This service implements the core functionality of the

Network App, containing the necessary python scripts that a developer can use to

communicate with the EVOLVED-5G components.

4. redis_db: Implementation of a database to store information exchanged with

CAPIF, NEF and TSN

Figure 16 List Dummy Network App files

4.2.2 Verification Phase

The verification of a Network App is implemented using a variety of tools, as explained

in Section 4.1.2. Besides configuring tools like SonarQube, Trivy and Nmap for

performing quality checks on the Network App's code and its containerization, the main

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

28

focus of the verification process is to ensure that the Network App effectively

communicates with the 5G network. To fulfil this goal an appropriate testing process has

been set up based on the testing plans of the relevant 5G capabilities exposure tools

offered by the EVOLVED-5G framework, namely, CAPIF Core Function tool, NEF

emulator and TSN API.

Figure 17 NEF verification pipeline (part I)

Figure 18 NEF verification pipeline (part II)

The verification of the communication of a Network App with the 5G network is realized

through two pipelines in the CI/CD platform of EVOLVED-5G. The two pipelines

implement NEF and TSN testing, respectively. Both pipelines require the CAPIF Core

function tool in the background as the NEF and TSN APIs depend on CAPIF. The NEF

testing pipeline, which is illustrated in two parts in Figure 17 and Figure 18, instantiates

several Docker images to implement the communication verification of the different

components. It creates the Robot Framework container, in which the code of the Network

App retrieved from the EVOLVED-5G repository is also imported. At the same time, the

containers of the 5G network tools, i.e., NEF emulator and CAPIF tool, need also to get

configured and set up. Once all required containers are alive the actual tests are executed

(step 14 “Run test cases” of the pipeline). The TSN testing pipeline is implemented

similarly to the NEF pipeline, as depicted in Figure 19.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

29

 Figure 19 TSN verification pipeline

These verification tests constitute, in practice, integration tests that verify the proper

invocation of the relevant CAPIF, NEF and TSN APIs by the Network App. For enabling

this verification horizontally for all Network Apps, common implementation guidelines

are provided by the Dummy Network Application (please, refer to Section 4.2.1.3) that

was implemented for this purpose, among others. The verification process has been

designed based on the Dummy Network Application. However, at the same time it is

parameterized to accept any Network App as the target of the verification. Provided that

a Network App implements the communication with the 5G network as exemplified by

the Dummy Network Application, the verification of the Network App to 5G network

communication will succeed.

Figure 20 Parameterization of the NEF verification pipeline

Figure 20, depicts the parameters of the NEF relevant verification pipeline in the

EVOLVED-5G CI/CD platform. The NetApp_repo and NetApp_repo_branch parameters

specify the Network App to be verified. For the case of the example, the Dummy Network

App is the one to be tested. In this figure, the parameterization of the NEF testing pipeline

is shown. The TSN testing pipeline follows the same structure, as well.

Details about the specifics of the tests that verify the communication of the Network App

with the CAPIF, NEF and TSN APIs are given in the following sections.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

30

4.2.2.1 Network App-CAPIF Interaction

A Network App interacts with CAPIF in order to a) register itself to CAPIF and b) make

use of services exposed by CAPIF. These interactions are described below:

Registering the Network app to CAPIF

Network App developers have to register and onboard their Network Apps to CAPIF

server as a first step. The registration and onboarding need to happen once. Once this

registration is complete, the Network App is recognized by the CAPIF tool and has access

to view and use the available 5G-APIs. The registration can happen by calling the

following CLI command evolved5G register_and_onboard_to_capif --

config_file_full_path= “path to file”. This CLI command makes use

of the CAPIFInvokerConnector SDK class, that was described at section 4.1.1.2.2. An

example of the config file can be found at [37].

The configuration file contains the path to a folder where the certificates required for the

Network App - CAPIF communication are to be stored.

Using services exposed by CAPIF

The Network App interacts with CAPIF in order to retrieve and use the exposed

endpoints. This is manifested with the usage of the SDK Libraries that encapsulate all the

calls to the CAPIF APIs.

The ServiceDiscoverer class described in section 4.1.1.2.2 allows to:

a) to get access tokens for the specific Network App

b) to retrieve the available endpoints. Most of the classes of the SDK libraries, as

described in section 4.1.1.2.2 (LocationSubscriber, ConnectionMonitor,

QosAwereness, TSNManager) use the ServiceDiscoverer in order to make the

relevant CAPIF API calls.

This communication is transparent for the Network App developer since all the

communication is handled by the SDK itself. In scenarios where the Network App does

not have access to make relevant calls (for example because the Network App is not

registered to the CAPIF server) relevant error messages are raised.

For the verification of the communication of the Network App with CAPIF, the tests

check that the Network App successfully registers with CAPIF. A successful registration

issues a certificate for the Network App, which is used in subsequent message exchanges

with CAPIF. However, the rest of communication with CAPIF is transparent to the

Network App, as it is actually implemented in the background, every time the NEF API

is invoked by the Network App.

At step 8 (“Setup dummy NetApp”) of the verification pipeline of Figure 17, the Network

App container is instantiated (code illustrated in Figure 21). Besides the registration to

CAPIF that takes place at that point, the Network App also exposes a callback API, which

may receive messaged from CAPIF asynchronously. This is also automatically checked.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

31

Figure 21 CAPIF invocation in the verification pipelines

4.2.2.2 Network App-NEF Emulator Interaction

A Network App interacts with the NEF emulator in order to simulate calls to a 5G

Network. This can speed up development time since the Network App developers can

quickly create and test scenarios, using a local installation of the NEF emulator, in their

own workstations.

Requirements for Network App-NEF Emulator Interaction

The Network App needs to have registered and onboarded to CAPIF (as explained in

section 4.2.2.1. Provided these, the Network App can now make direct calls to the NEF

emulator.

Using NEF endpoints:

The NEF APIs can be separated into two main categories:

• APIs related with monitoring devices in the network (their location or their

connectivity)

• APIs related with controlling and monitoring network parameters (Quality of

Service)

The Network app can make direct calls to these APIs (provided that the relevant access

tokens have been received first from CAPIF) and retrieve information from the NEF

emulator either synchronously (e.g., get the location of a given device) or asynchronously

(e.g., get a notification when a given device changes location) as explained in section

4.1.1.2.2.

The same interaction can be achieved by using the relevant SDK classes:

LocationMonitoring, ConnectionMonitoring, QosAwareness. As mentioned earlier, these

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

32

classes hide all the implementation details and all the communication with CAPIF and

NEF is handled by the SDK itself.

For verifying the communication of the Network App with NEF, an elaborated testing

plan has been designed and implemented covering a variety of test cases. For the

monitoring event API, various test cases check that the Network App successfully

subscribed and remains properly subscribed to three different suites of functionalities

offered, that is (i) UE reachability, (ii) location reporting and (iii) loss of connectivity. An

exhaustive list of test cases for creating, manipulating and monitoring the subscription of

the Network App to these NEF APIs are executed. A similar approach is followed for

checking the subscription to the second NEF API, i.e., the Quality of Service (QoS) API.

Similarly, to CAPIF, also in this case, the instantiation of the Network App container at

step 8 of the verification pipeline exposes the NEF callback API of the Network App and

verifies that notifications sent by NEF may asynchronously get received by the Network

App.

Figure 22 NEF invocation in the verification pipeline

4.2.2.3 Network App-TSN APIs Interaction

A Network App interacts with the TSN APIs in order to apply Time-Sensitive Networking

(TSN) standards to time-sensitive Network Apps.

Requirements for Network App-TSN FrontEnd Interaction:

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

33

The Network App needs to have registered and onboarded to CAPIF (as explained in

section 3.2.2.1. Provided these, the Network APP can now make direct calls to the TSN

API.

Using TSN API:

The TSN APIs allows to:

Retrieve the details of a set of preconfigured TSN profiles (that is, a set of parameters).

Apply such profiles, or customized profiles to address the specific Network App needs.

The related parameters are explained in detail at [33].

The Network app can make direct calls to these APIs (provided that the relevant access

tokens have been received first from CAPIF) or make use of the TSNManager SDK class,

as explained in section 4.1.1.2.2, that hides all the implementation details and takes care

of the communication with CAPIF and TSN.

The proper utilization of the TSN API by the Network App is verified by relevant unit

tests that check the TSN API invocation by the Network App. The tests check three

different functionalities, as show in Figure 23, implemented by the Network App: (i) that

applied profiles can be successfully retrieved, (ii) that new profiles may successfully be

applied, (iii) that profiles can be deleted.

Figure 23 Implementation of the TSN testing plan in the TSN verification pipeline

Any failure in at least one of these tests results in failure of the verification.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

34

4.3 SECURITY
The scope of this section to focus on security aspects related to the Workspace

environment, especially during development and verification phases. It describes the

different measures implemented to avoid jeopardize any data of the project.

4.3.1 Development Phase

In the development phase, primary the focus is on the GitHub as it stores everything

related to the Network App.

A public organization called EVOLVED-5G has been created on GitHub where all

Network App repositories as well as the tools implemented during the project, such as,

SDK, NEF, CAPIF, TSN, Dummy Network App, and the CI/CD pipelines are stored.

Anyone searching for this project either internal or external to the consortium is able to

access the organization and navigate throughout the content of the different publicly

available repositories. However, it is not possible for any external developer to modify or

even download the code from public repositories, to guarantee safety it is mandatory that

anyone external or internal to EVOLVED-5G to be added to the GitHub organization.

Every organization in GitHub is granted with a set of roles for security purposes meaning,

the developer must be granted with some type of role in order to contribute to a repository

enhancement within the organization.

Each repository in the EVOLVED-5G GitHub can be configured and customize as the

repository creator pleases, finding different set of rules and, giving for example, the

option of allowing just specific users to perform modification in the code. Additionally,

GitHub also allows configuring Pull Requests (e.g., process where two different branches

are merged), in order to block such process until another user (not the same launching the

Pull Request) or an admin review and accept or not the changes.

Security measures are also in place to clone or create a Network App repository. In order

to clone a repository, there are two main options, first one is HTTPs where a username

and password is provided to authenticate the user, the second one is via SSH key

previously generated by the user. Finally, to create a repository in EVOLVED-5G GitHub

using the SDK, is mandatory for each user to create a personal access token and copy it

in the configuration file asked when the generate command is executed, otherwise an

Authentication failure message will be return to the user.

4.3.2 Verification Phase

The verification phase, although a distinct stage in the Network App lifecycle, it is in fact

executed as a final step of the development phase. This means that the Network App

developer invokes the verification during the development using the exact same resources

and security mechanisms described in the previous section. At the same time, for the

execution of the verification pipeline from the CLI tool of the EVOLVED-5G facility,

certain security measures are applied by the CI/CD platform. These are explained in the

next section.

Regarding the communication of the Network App with NEF and CAPIF during the

verification, it is implemented over TLS, as explained in detail in Sections 4.3.2.4 and

4.3.2.5. In summary, on one hand certificates issued by CAPIF enable the authenticated

usage of CAPIF services, and on the other hand, a proper authentication mechanism

provides the necessary tokens to Network Apps for consuming the NEF APIs.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

35

4.3.2.1 Security in Jenkins

Jenkins is an industry standard for CICD automation, massively adopted by software

companies. According to 6sense [38], the Jenkins market share is shown in the following

picture:

Figure 24 Jenkins Market Share numbers

Jenkins includes security in its design, and security management is large described at

Jenkins documentation [39].

Telefónica’s CICD environment follows strict security compliance processes that include

both Authentication and Authorization management.

• Authentication (users prove who they are) is done using a security realm. The

security realm determines user identity and group memberships.

• Authorization (users are permitted to do something) is done by an authorization

strategy. This controls whether a user (directly or through group memberships)

has a permission.

Access to all EVOLVED-5G pipelines is restricted to registered users that have the

appropriate permissions.

4.3.2.2 Security in Open Repository

GitHub has security features to keep code and secrets secure. EVOLVED-5G

organization has chosen the free plan which include Dependabot alerts and security

updates, Security overview for repositories and security policy among others. A full list

of features as well as further information is available in [40].

The container image artifact repository has a PRO X license with security built in features

like Vulnerability Scanning and Premium Vulnerability Database (powered by VulnDB

[41]). It is deployed in Telefónica’s internal Network therefore, it is not publicly exposed.

4.3.2.3 Security in OpenShift

OpenShift is a commercial product licensed by Red Hat. This container platform includes

the expected security design and implementation, and it is described in Product

Documentation and books like [42].

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

36

Telefónica CI/CD environment includes OpenShift v4 as the container platform. This

deployment includes security management with Authentication and Authorization

enabled.

Figure 25 OpenShift console showing User Identity (upper right corner) and project permissions

OpenShift container platform has been described in D3.2 [43] Section 2.6.1, and the

update will be described in D3.4.

4.3.2.4 Security in NEF

The security aspects of the Network Exposure Function (NEF) are defined in 3GPP TS

33.501 [44]. This specification outlines the requirements that should be met in the

interface (N33) between the NEF and an Application Function (AF), which are the

Network Apps in the context of the project. Table 2 provides an overview of these security

aspects, including how to provision them and whether the NEF Emulator developed in

the project supports them.
Table 2 NEF Security features

Requirements Provisioning NEF Emulator

Integrity protection, replay

protection and

confidentiality protection

for communication

between the NEF and

Application Function shall

be supported

TLS shall be used to

provide integrity

protection, replay

protection and

confidentiality protection

for the interface between

the NEF and the

Application Function. The

support of TLS is

mandatory (Protection of

the NEF – AF interface)

Supported

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

37

Mutual authentication

between the NEF and

Application Function shall

be supported.

Mutual authentication

based on client and server

certificates shall be

performed between the

NEF and AF using TLS

Supported (only server

side)

The NEF shall be able to

determine whether the

Application Function is

authorised to interact with

the relevant Network

Functions

The NEF shall authorise

the requests from

Application Function using

OAuth-based authorisation

mechanism, the specific

authorisation mechanisms

shall follow the provisions

given in RFC 6749

Supported

SUPI shall not be sent

outside the 3GPP operator

domain by NEF.

The 3GPP system stores

within the subscription

data the association

between the GPSI and the

corresponding SUPI. The

GPSI is either an MSISDN

or an External Identifier

Supported

Internal 5G Core

information such as DNN,

S-NSSAI etc., shall not be

sent outside the 3GPP

operator domain.

Out of scope Out of scope

NEF Emulator supports server-side authentication based on certificates, for the

authentication of the external applications (i.e., Network Apps). Additionally, the TLS

protocol is used to provide integrity, replay and confidentiality protection of the NEF-AF

interface (N33). After the successful authentication, the API requests from external

applications are authorized using OAuth-based authorization. The use of external

identifiers is an important aspect of the NEF APIs, as it ensures that the SUPI is not sent

outside the 5G NPN domain. Instead, external identifiers are used, which are mapped to

the corresponding SUPI within the subscription data. This provides an additional layer of

security, as sensitive subscriber information is not exposed to external entities.

NEF and CAPIF communication are secured using TLS mutual authentication as

described in the next section.

4.3.2.5 Security in CAPIF

Security in CAPIF is described in TS 33.310 [45]. It describes the security requirements

for all CAPIF reference points, namely from CAPIF1/CAPIF-1e to CAPIF 7/CAPIF-7e.

At the transport layer, the security procedures for CAPIF-1/CAPIF-1e reference points

mandate that mutual authentication based on client and server certificates shall be

performed between the CAPIF Core Function (CCF) and the API Provider/Invoker, using

TLS. It is noted that TLS provides integrity protection, replay protection and

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

38

confidentiality protection for all the reference points of the CAPIF architecture.

Certificates to be used shall follow the profiles given in 3GPP TS 33.310.

At the application/user layer, CAPIF shall be able to authenticate and authorize each user

asking for API services and shall coordinate authentication and authorization between

API Invoker and AEF. It is noted that, the authentication process refers to the process of

verifying the identity of a user by obtaining some sort of credentials (e.g., username,

password). Authorization, on the contrary, is the process of allowing an authenticated

user to access resources by checking whether the user has access rights to those resources.

API invocation between API Invokers and API Providers is specified in CAPIF2/CAPIF-

2e reference point. This reference point allows the selection of Security methods between

API Invoker and API Providers. For those processes PSK, PKI, or OAuth tokens can be

used. More precisely, based on the specifications (TS 33.310), the following methods

have been defined:

- Method 1: Use of TLS with PSK. A Pre-Shared Key (PSK) is used for the API

Invoker and AEF interaction.

- Method 2: Use of TLS with PKI. Mutual authentication is provided. It is assumed

that both API invoker and AEF are pre-provisioned with certificates created by a

certificates engine.

- Method 3: Use of TLS with OAuth token. The CCF shall perform the

functionalities of the Authorization and token protocol endpoints, the API invoker

shall perform the functions of the resource owner, client and redirection endpoints

functionalities, while the AEF shall perform the resource server functions.

All additional reference points in CAPIF mandates to use TLS mutual authentication.

Support for TLS has been added in CAPIF Release 2.0 and Security API for managing

Security contexts has been added in Release 3.0, as described in section 4.1.2.5.

4.3.2.6 Security in TSN

Security in the TSN infrastructure is achieved at two different levels: by exposing the

TSN FrontEnd API through CAPIF, and by accessing the actual TSN hardware from a

separate component (the TSN AF), that is located in the trusted environment.

The TSN FrontEnd makes use of the OAUTH implementation provided by CAPIF. First,

the TSN FrontEnd onboards the API to CAPIF, receiving a public key as part of the

process. Every invoker then discovers the API also receives a secure token generated by

CAPIF, which must be sent as part of every request sent to the TSN FrontEnd. The TSN

FrontEnd makes use of the CAPIF public key in order to assess the validity of the token,

guaranteeing that the user is trusted.

The TSN FrontEnd does not have any access to the actual TSN infrastructure, instead,

every request is processed and sent to an internal component, the TSN AF, through a

private connection only available as part of the trusted environment. This enhances

security, as well as allows the usage of the same TSN FrontEnd regardless of the existence

or specific details of the available TSN hardware.

5 VALIDATION ENVIRONMENT
The Validation environment provides the functionality required for the execution of the

Validation phase, where the Network App along with the Vertical App are tested in real

or near real network conditions. The Validation environment makes use of the equipment

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

39

available in the 5G-NPN, including real 5G-NR deployments, devices and deterministic

communication capabilities in the infrastructure.

The Validation environment has been described as part of Deliverable D3.1 –

“Implementations and integrations towards EVOLVED-5G framework realization” [15],

with minor updates presented in Deliverable D2.3 [46], in both documents as part of

Section 5. This is the point of reference that we use to explain the delta between D3.3 and

D3.1 and D2.3, respectively.

Figure 26 Validation Environment architecture

5.1 COMPONENT DESCRIPTION
Figure 26 shows the components of the Validation environment. execution requests that

correspond to certain steps of the Validation (specifically steps 7 and 26 in Figure 27) are

sent by the CI/CD Services to the front-end of the environment, which is implemented by

the Dispatcher in the form of the Open APIs. The Dispatcher provides functionality for

handling authentication, results retrieval and experiment execution, along with optional

functionalities related to the onboarding of VNFs, which can be useful for the deployment

of components of the Vertical App, in case these are provided as virtual machines.

The Dispatcher acts as a single entry point to the Validation environment, redirecting

when necessary, the request to other internal components that are specifically tailored for

providing specific functionalities related to the execution of experiments and retrieval of

results. These internal components are:

- The Experiment Life-Cycle Manager (ELCM), which is able to coordinate the

execution of experiments in the 5G-NPN, orchestrating the different hardware and

software components that are to be used during testing.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

40

- The Analytics Module, which is able to process the raw results stored within the

Results Catalog during an experiment execution, providing raw or aggregated

measurements that can be presented either in a graphical interface or as JSON

payloads.

5.2 IMPLEMENTATION

5.2.1 Validation Phase

From the point of view of the Network App developer, the execution of the Validation

phase follows the same systematic and sequential design as Verification. However, there

are distinct differences both from the point of view of the steps to follow and the

procedural logic as detailed below:

• Network App developers request the execution of the Validation pipeline

available in the CI/CD Services through the SDK (CLI tool).

• As a result, the Network App developer receives the information generated during

the Validation phase as a report (pdf) in their inbox email (logs in the case of the

Verification).

• Internally, the execution of the pipelines is also similar, however, in the case of

the Validation, several steps involve direct use of the 5G-NPN infrastructure as

well as the deployment of the Network App on the K8 clusters of the platforms

(Málaga and Athens).

• The Network App developer can access any necessary physical equipment

provided by the real network and radio deployments of the platforms for the

execution of tests on the Vertical App.

The CI/CD services execute a set of tests over the Network App (including all the tests

from the Verification phase plus additional ones related to scaling, open source software

usage or interaction with the Vertical App) on both the source code and deployed

instances of the application. In this case, the deployed Network App resides in the

Kubernetes cluster of the Validation environment (platform), which is made available to

the CI/CD services by VPN access. For the steps that make use of the physical equipment

in the Validation environment, the CI/CD services request the execution, through the

Dispatcher but effectively performed by the ELCM, of specific test cases defined in the

platform. These test cases implement:

- The platform assessment tests, which perform an initial validation of the

functionality and performance of the Validation environment, ensuring that all

equipment performs within the expected thresholds before the deployment and

testing of the Network App. This is step 7 in Figure 27, below.

- Any tests defined by the Vertical (i.e., the Vertical App developer and/or the

Network App developer), which are related to performance and functionality

assessment of the Network App plus Vertical Application, as part of step 26 in

Figure 27. Such tests are defined an implemented prior to the execution of the

Validation phase, through collaboration between the Vertical and the platform

owners.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

41

After the finalization of the execution for each of these steps, the CI/CD services retrieve

the generated results, including the KPIs obtained during the Network App – VApp

integration tests (step 26) and the performance of the platform (for example, measured

throughput and latency in the radio, from step 7), which are then included as part of the

Validation Report provided to the Vertical.

It is worth to mention that just the Network App is verified and validated during

verification and validation phases although, during the Validation phase the Vertical App

is required to validate the proper communication of the Network App against a real 5G

System as well as the interaction with the Vertical App.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

42

Figure 27 Validation workflow

Figure 27 shows the Validation process workflow in a visual manner. The process starts

with an initial consultation phase (steps 1 to 3) in which Network App developers,

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

43

Vertical App developers and Validation managers (Platform Owners) are in contact.

During this phase, the specific details and goals of the Validation are defined considering

the interests and particular needs of the Network and Vertical App developers, required

functionalities (e.g., for interfacing with specific devices) are implemented and initial,

manual tests are performed. Ensuring the correct execution of the Automated validation,

which is initiated in step 4.

The CLI tool (step 5) initiate the execution of the Validation pipeline, which include a set

of actions and tests that are executed in the 5G-NPN (step 6).

First, an assessment of the status of the platform is performed (step 7), in order to

ensure the correct functionality of all equipment. These tests are performed in the 5G-

NPN by the Open5Genesis Framework, using the APIs described in Section 5.2.1.1.

Steps 8 to 12 include the retrieval of the Network App code and container image, and the

usage of SonarQube and Trivy tools for an initial code analysis and container

vulnerability scan.

The CAPIF Core Function (step 13), NEF Emulator (step 14), TSN FrontEnd (step 15)

and Network App instance (step 16) are deployed in the Kubernetes environment of the

5G-NPN. Then it is assessed that the communication ports described (in the docker

compose) as part of the Network App are indeed being used (step 17).

The pipeline continues with three sets of tests dedicated to the interaction of the Network

App with the CAPIF and NEF services, and to test its scalability:

- CAPIF Core Function: Steps 18 to 20 test the correct onboarding, discoverability

of services and reception of callbacks.

- NEF Emulator: Steps 21 and 22 assess the correct usage of the available NEF

APIs

- TSN APIs: Step 23 confirm that a configuration request has been sent to the TSN

FrontEnd

- Scalability: Steps 24 and 25 test support for scaling up and down the Network

App.

Step 26 includes the execution of any customized tests that have been defined by the

Vertical. The execution of these tests is offloaded to the Validation Environment (in

particular, the Open5Genesis Framework deployed in the 5G-NPN).

The following steps are devoted to the clean-up procedures of the environment. These

include destroying the Network App instance (step 27) and assessment of the correct

offboarding to CAPIF (step 28), and the removal of the TSN FrontEnd (step 29), NEF

(step 30) and CAPIF instances (step 31).

In step 32, Debricked [47] is used for generating a report on all the open-source licensed

assets used as part of the Network App. The results of all previous steps are included in

the report generated in step 33.

In every case, the Vertical receives this report via email (step 34). If all the results

obtained in each of the tests performed are satisfactory, then the Network App is

considered Successfully Validated, and the container image is uploaded to the Open

Repository (artifact).

5.2.1.1 ELCM

The ELCM, which is available as open-source software in the EVOLVED-5G GitHub

organization [48] is the main orchestrator and execution engine in the Validation

environment. It is in charge of both the platform assessment tests and the Network App –

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

44

Vertical App tests that can be defined by the Verticals. The ELCM coordinates the

execution of test cases, which are composed by a set of tasks that corresponds to the

actions required for an experiment execution. Separate task types are able to perform

different kind of actions, such as:

- Controlling the execution flow of an experiment depending on certain conditions.

- Retrieving or generating values that can, in turn, be used by other tasks.

- Making use of interfaces for controlling external (to the ELCM) software or

hardware components.

- Delegating the execution of actions to other orchestrators, such as OpenTAP [49]

or Robot Framework [50], and gathering the results.

Among others.

The initial set of enhancements and updates that have been applied to the existing code

inherited from the 5Genesis H2020 project has been detailed in Deliverable 3.1 [15]

Section 5.5. From this point, several additional modifications have been performed,

which are detailed below.

- The 3.2 series of releases added support for verdict handling, this is, to label an

experiment execution as Pass, Inconclusive, or Fail (among others), depending

on the criteria applied to each independent steps that form the execution. This

corresponds to the same idea in acceptance testing, where a test may Pass or Fail

depending on certain conditions. Additionally, these releases added support for

generic evaluation of expressions as part of a test case, reducing the need of adding

custom code for simple computations.

- The 3.3 series did not include new functionality but added support for version 2

of the test case definition format (while retaining backwards compatibility with

the previous version). Version 2 improves readability of the test cases and is the

base of future enhancements implemented in the 3.6 release.

- Releases 3.4 and 3.5 include support for the execution of tests defined in Robot

Framework, and updates to the NEF emulator integration.

- The 3.6 series contains a completely overhauled experiment execution logic. This

release introduces the concept of child tasks, allowing the definition of

experiments with a more complex execution flow akin to the capabilities of

imperative programming languages. In addition, support for task labels (both

automatically and manually defined) and an improved log viewer in the ELCM

dashboard ease the study and debugging of experiment executions.

5.2.1.2 CI/CD services - Validation environment Interaction

As mentioned previously, the execution of the validation phase is started via the CI/CD

services, which is also responsible for retrieving the generated results in order to prepare

the report that is provided to the Network App developers as well as to detect issues

during the process that can lead to a premature finalization of the validation. To this end,

the CI/CD services make use of several endpoints handled by the ELCM and Analytics

Module:

- Handled by the ELCM: Experiment execution request, execution status

information, execution logs and KPIs of interest (Table 3).

- Handled by the Analytics Module: Aggregated measurements of the selected KPIs

(Table 4).

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

45

Table 3 Open APIs experiment management endpoints

API prefix: /elcm

Endpoint Method Description

/experiment/run POST

Creates and queues a new experiment execution, based

on the contents of the received experiment descriptor.

Replies with the following response JSON:
{“ExecutionId”: <id>}

Where <id> is a unique execution identification that can

be used as input in other endpoints.

/execution/<id>/status GET

Returns a JSON that contains general information about

the status of the selected execution id, with the

following schema:
{

“Coarse”: Global status or current stage of

execution,

“Status”: Global status or status within the

current stage,

“PerCent”: Percentage of completion of current

stage,

“Messages”: List of global messages generated

by the execution,

“Verdict”: Current or final verdict of the

execution

}

/execution/<id>/logs GET

Returns a JSON that contains all the log messages

generated by the execution, separated by stage:
{

“Status”: Either “Success” or “Not Found”,

“PreRun”: Messages generated during Pre-Run

stage,

“Executor”: Messages generated during the Run

stage,

“PostRun”: Messages generated during Post-Run

stage

}

/execution/<id>/kpis GET

Returns a list of pairs (measurement, KPI) that are of

interest from all the results generated by an experiment

execution, with the format:
{“KPIs”: [(measurement, kpi), (measurement,

kpi), …]}

Table 4 Open APIs result retrieval endpoints

API prefix: /result_catalog

Endpoint Method Description

/statistical_analysis/<

datasource>
GET

Returns a JSON structure that contains the statistical

analysis of the selected KPIs, where <datasource> is the

internal database to query. Accepts the following URL

parameters:

experimentid: Execution ID of the experiment, the same

as returned by the experiment management endpoints.

measurement: Measurement to obtain (table)

kpi: KPI to obtain (column)

/get_data/<datasourc

e>/<id>
GET

Returns a JSON structure that contains the raw

measurements of the selected KPIs. Accepts the following

URL parameters:

measurement: Measurement to obtain (table). Returns all

measurements by default

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

46

remove_outliers: ‘none’, ‘zscore’ or ‘mad’. Defaults to

none

match_series: Synchronize data from multiple

measurements (default: false)

max_lag: Time threshold for synchronization (default: 1s)

limit: Maximum number of rows to return (default: none)

offset: Number of rows to skip on the returned results

(default: none)

additional_clause: Custom InfluxDb clause (default:

none)

chunked: Whether to retrieve the results from the server in

chunks (default: false)

chunk_size: Number of records per chunk (default: 10000,

if chunked is enabled)

5.3 SECURITY
Security on the Validation environment is handled by the Dispatcher component, which

is in charge of assessing the validity, in terms of format correctness and authorization, of

any received requests before redirecting their processing to the corresponding element

internally. In addition to this, in the context of EVOLVED-5G, access to the environment

is limited to the CI/CD services, which make use of secure connections provided by VPN

access.

6 EVOLVED-5G INFRASTRUCTURE EVOLUTION

6.1 COMPONENT DESCRIPTION
This section aims to provide a detailed explanation of the main upgrades that have been

made to the platforms from descriptions already provided in D3.1 and used in the

EVOLVED-5G project to compose the 5G-NPN Infrastructure. Additionally, this section

describes the NEF emulator and CAPIF Core Function tool and the enhancements that

have been performed since then.

6.1.1 Athens platform evolution

A key principle of the Athens platform is to provide multiple set-ups in a modular way to

support and enhance a variety of test cases and experiments related to EVOLVED-5G. A

detailed description of the infrastructure regarding the Athens platform has been provided

both in D2.2 and in D3.1. However, the already existing implementation has undergone

some architectural updates since then, which are mainly reflected to the new

interconnection with a dedicated 10G dark fibre, between the two sites that compose

Athen's platform, namely NCSRD and Cosmote, and the result is having two fully

operational 5G SA networks. Thus, the NCSRD campus site includes two radio access

networks that are connected to different 5G cores, which enable further research in inter-

PLMN handover and roaming scenarios.

Moreover, several updates have taken place on top of the NEF Emulator as part of the

infrastructure evolution, and these updates are described in detail in section 6.1.5.

The first 5G SA network is based on ATHONET 5G SA Core and ERICSSON

BBU/RRU/RAN, being deployed both at the COSMOTE and NCSR Demokritos

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

47

campuses. More specifically, the ATHONET 5G Core is located in Cosmote/OTE

Academy premises and is used to drive two ERICSSON BBU units, one deployed at

Cosmote campus and one deployed at NCSR Demokritos campus. Each one of these two

BBUs is controlling 3 ERICSSON RRU/RAN units at each domain, therefore realising a

large scale 5G network with 6 indoor/outdoor cells/RAN units in total for both sites.

The latter 5G SA network is deployed only at NCSR Demokritos campus and is based on

Amarisoft 5G RAN and a variety of potential 5G SA Core implementations, such as

Amarisoft, Open5GS [60] and Athonet, are supported.

Although the Athens platform extension involves important infrastructure updates, it is

important to acknowledge that these updates may not be fully utilized within the project's

timeframe.

6.1.1.1 Core Network

Open5GS: Open5GS is an open-source 5G core network and a highly suitable option for

the Athens platform due to its support for distributed NF deployments, which aligns with

the evolution toward the distributed 6G architecture. One of the key advantages of using

Open5GS is the ability to deploy UPF in different locations within the testbed, such as at

the edge site and the core site, and associate them with different network slices (e.g., S-

NSSAI). Overall, this approach allows for greater flexibility and enables the support of

multiple user planes in three dimensions, including network slicing, traffic steering, and

Application Function (AF) traffic influence.

Amarisoft 5G SA Core: The Amarisoft 5G Core network solution provides essential

network functions for the operation of a 5G network, Access and Mobility Management

Function (AMF), Authentication Server Function (AUSF), Session Management

Function (SMF), User plane Function (UPF), UDM (Unified Data Management) and 5G-

EIR (5G Equipment Identity Register) all integrated within the same software component.

Athonet 5G SA Core: ATHONET 5G Stand Alone (SA) core network includes two

UPFs (User Plane Function) to emulate the edge and core 5G network data plane. The

network also features 3GPP (3rd Generation Partnership Project) Control Plane Network

Functions, including the Access and Mobility Management Function (AMF), Session

Management Function (SMF), Authentication Server Function (AUSF), and User Data

Management (UDM) Function. These functions enable the management and control of

the network. Additionally, the network supports 3GPP interfaces, including N1, N2, N3,

N4, and N6, which enable communication between network functions. This setup is

hosted at COSMOTE Cloud facilities, providing a secure and reliable infrastructure.

6.1.1.2 5G RAN

In addition, the RAN part of the network has been updated by adding new equipment to

enable inter PLMN capabilities between two domains.

Ericsson 5G RAN: The RAN is based on the Ericsson BBU 6630 which is a baseband

unit that provides high-performance connectivity for mobile networks. The unit is

compatible with various radio units, including the 4408, which is designed to provide

high-capacity and low-latency connectivity for outdoor deployments. In addition to the

radio unit, the system also includes the Indoor Radio Unit (IRU) 8848 and Dot 4479

B78L, which are essential components for the indoor deployment of a 5G network

(depicted in Figure 3). The GPS system is used for synchronization purposes and ensures

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

48

accurate timing and location data for network operations. Together, these components

form a powerful and reliable radio access network that delivers high-speed connectivity

and low latency.

Figure 28 Ericsson 5G RAN

Amarisoft 5G RAN: The Amarisoft 5G NR can operate in FDD/TDD frequency bands

below 6 GHz with up to 50 MHz of bandwidth. It supports various subcarrier spacing

options for both data and synchronization signals and can operate in MIMO

configurations up to 4x4 in DL. The aforementioned MIMO layers can be also

complimented either in one 5G cell with 50MHz bandwidth and 2x2 MIMO

configuration, or three 5G cells with 20MHz bandwidth and 2x2 MIMO configuration

each. This flexibility allows for the deployment of the 5G network in different scenarios

depending on the available resources and the specific requirements of the use case.

6.1.1.3 Kubernetes cluster implementation

In order to validate the Network Apps and execute validation tests, they need to be

deployed in containerized infrastructure, such as Kubernetes and be executed in order to

test the interaction with NEF and CAPIF. The Deployment of Kubernetes (K8s) cluster

in Athens Platform consists of 3 virtual machines (VMs), 1 master node and 2 working

nodes each one with the following characteristics, 2x vCPUs, 4GB RAM. Access to the

nodes can be achieved via Virtual Private Network (VPN) connectivity and the overall

setup of the cluster has been updated to K8s v1.26.

Compared to the setup that has been described in D3.2 the cluster has undergone some

updates to be ready and functional for the validation phase. More specifically the Calico

plugin has been updated to Cilium, geared to provide a flexibility towards the connectivity

of the network through specific configurations and policies. Additionally, a NGINX

Ingress Controller has been deployed, following the NodePort service exposure approach

to route incoming requests to a certain service. The high-level architecture of the overall

deployment can be seen in Figure 29 below.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

49

Figure 29 Athens Kubernetes Cluster

6.1.2 Málaga platform evolution

Work on the evolution of the Málaga platform, since the status described in Deliverables

D2.2 [51] and D3.1 [15], can be divided in three main topics: Improvements to the

Kubernetes cluster, work on the TSN implementation and exposure, and updates to the

radio equipment along with the acquisition of additional UEs, which are presented in the

following sub-sections.

6.1.2.1 Kubernetes cluster implementation

In the Málaga cluster, the nodes are accessed by means of a Load Balancer implemented

with MetalLB [52], which allows balancing the traffic load between the services exposed

in the different nodes. There is also an Ingress controller implemented with contour that

allows a more elaborate way of exposing the services.

A role-based policy (RBAC) is used to allow the isolation of users using the cluster.

Containerd is used as container runtime, and for networking between the different

elements of the system, Calico is used. In addition, KubeVirt is used for the virtualization

of VMs in the system over the containerized infrastructure.

Finally, for system monitoring, Prometheus is used together with Grafana for the

visualization of the measurements taken by the system.

6.1.2.2 Time-Sensitive Networking (TSN) over 5G

The TSN over 5G infrastructure in Málaga has evolved with respect to the one already

introduced in D5.1. The current architecture of the TSN over 5G testbed at the Málaga

platform is represented in Figure 30.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

50

Figure 30 TSN over 5G testbed at the Málaga platform

On the one hand, the existing TSN hardware is composed of one TSN Bridge, two TSN

endpoints and TSN translators (DS-TT and NW-TT). In addition, we have added new

hardware components to the actual ones, which are synchronization equipment in order

to deal with time synchronization challenge and a ball balancing table as a visual

demonstrator.

On the other hand, the TSN AF has suffered significant changes, since it is the main TSN

development coming from EVOLVED-5G project. The main objective of the TSN AF is

to maintain the TSN traffic requirements during a TSN session (end-to-end traffic) by

reconfiguring the 5G network. We implement a Zero-Touch approach, which is a closed

loop for reconfiguration. Automata Learning is used to learn the network behaviour and

construct different automatons by monitoring the 5G and TSN networks. The idea is to

take advantage of these automatons to predict possible deviations and apply the network

configuration to continues meeting the TSN traffic requirements.

This component, along with the TSN FrontEnd described in Section 6.1.4, allows users

to request certain QoS for the TSN traffic session in advance. It allows also to apply a

network configuration beforehand. Moreover, we have developed a TSN backend to be

able to apply the configuration to the Nokia equipment available at Málaga platform. Note

that the FrontEnd can work without a real TSN backend. Nonetheless, in this case the

TSN FrontEnd will only accept best-effort requests. In addition, The TSN FrontEnd can

work with CAPIF, both for publishing the API and for securing access to the endpoints.

6.1.2.3 Radio evolution, user equipment and devices

In Málaga’s site and within Universidad of Málaga (UMA) premises, the Nokia radio

infrastructure has been upgraded with the new software version of radio equipment

SBTS22R3. This release includes all the new features required in order to meet the latest

3GPP Release 16 requirements.

Additionally, the 4 Remote Radio Heads (RRHs) that provide outdoor 5G Standalone

(SA) and Non-Standalone (NSA) and 2 pico RRHs that provide indoor 5G SA have been

changed in order to support the new subband 42 of band n78 of Telefonica 5G in Spain

and a bandwidth of 100 MHz.

UMA has acquired new UEs and modems for testing the SA mode and millimeter wave

(mmWave) performance, which can be seen in Figure 31:

• Telit’s FT980-WW advanced LTE/5G wireless router: Supports mmWave

bands n257, n258, n260, n261. Supports Standalone (SA) & Non-Standalone

(NSA) network. Supports 5G FR1 DL 4x4 MIMO DL and 5G FR1 UL 2x2

MIMO.

• One Plus 11 5G: Supports Standalone (SA) & Non-Standalone (NSA) network.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

51

• Google Pixel 7 5G: Supports Standalone (SA) & Non-Standalone (NSA)

network.

Figure 31 FT980-WW, One Plus 11 5G and Google Pixel 7 5G

6.1.3 CAPIF Core Function Tool evolution

CAFIF tool has been extensively described in D3.1 [15] and D3.2 [43]. At the time of

D3.2 publication, CAPIF Release 1.0 was described, with basic APIs for API Invokers

registration, API Publication and API Discovery. CAPIF Core Function tool has continue

its evolution adding functionality and APIs specified in TS 29.222 [18].

CAPIF Release 2.0 was published by 12/09/2022 and Release notes were published at

[53]. This release included the following changes:

• CAPIF Provider Management API: implementation of API Providers

registration in CAPIF Core Function.

• CAPIF Events API: CAPIF Events subscription management and Event

notifications to API Invokers and API Providers.

• TLS Enabled: TLS with mutual authentication is a strong requirement in most

3GPP specifications.

In order to support TLS, CAPIF Core Function has included a Certificate Authority to

expedite and manage Certificates. For this purpose, Easy_RSA project has been included

[54].

CAPIF Release 2.1 was published on 03/10/22 with bugfixing and some code

improvements.

A major refactoring of CAPIF Core Function was performed for Release 3.0. This release

was published on 27th January 2023, with Release Notes available at [55].

Besides code refactoring in this release, new APIs were added to this version:

- Security API: This API enables the creation of Security Contexts for managing

access from API Invokers to published APIs by API Providers. The security

options implemented included PKI (Certificates) and OAuth Tokens.

- Logging Service API: This API enables the registration of API invocations by

API Providers into CAPIF Core Function for auditing and charging purposes.

- Auditing Service API: This API enables querying CAPIF Core Function to

retrieve API logs submitted by API Providers.

Release 3.1 followed on 10/03/2023 including improvements on clearing entities in

CAPIF Core Function when API Providers and API Invokers are deleted from CAPIF

Core Function.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

52

With this release, CAPIF Core Function includes all the functionality required by

EVOLVED-5G verification, validation and certification processes. There are no major

releases planned within the context of EVOLVED-5G project.

6.1.3.1 CAPIF Core Function Tool implementation

Implementation of CAPIF Core Function has been performed using open-source tools

and projects, taking as reference input CAPIF API Release 17.0 descriptions by 3GPP

from [56].

Besides developing the CAPIF Core Function (CCF) API Services, it has been defined

the Test Plans for testing every API endpoint and it has been implemented automated

tests. A testing strategy has been defined to improve the code quality and the interaction

of the provided CCF and any API Invoker or Provider. This testing strategy is composed

of two steps:

• Test plan document elaboration: In this step, test plans are described, including

various behaviour scenarios (considering both success and failure cases). The test

plan structure includes clarifications on the pre-conditions, the action that takes

place, and the post-conditions (response/result expected). The horizon of the test

plans that have been defined, moves beyond the request-response information that

is available in the related 3GPP specifications, in a sense that behavioural

scenarios are defined to stress test the implementation integrity.

• Test implementation and execution: This step continues after finishing the

elaboration of the test plan documentation. Each test suite is implemented and

included into an automation pipeline that checks the status of the code after every

deployment in the platform.

The tools that have been used for implementing and testing the CAPIF API services are

the following:

OpenApi Generator: This software program allows generation of API clients SDKs

(Software Development Kit tools) or API servers given an OpenAPI specification.

Moreover, it is possible to generate code in more than 20 different programming

languages. Having the YAML files of the CAPIF services (as described above), we used

OpenApi generator to automatically create code that implements HTTP/HTTPS

Endpoints that act as Servers that accept HTTP requests.

MongoDB: Mongo is a non-SQL and open-source database tool used to provide storage

to different CAPIF core functionalities.

Nginx: Nginx is an open-source web serving technology that we use as a reverse proxy

to forward requests to the different CAPIF modules (Figure 32Figure 1)

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

53

Figure 32 NGINX implements TLS mutual authentication and routes API requests to CAPIF Core Function Services

Flask: Flask is a micro-service web framework written in Python used to build CAPIF.

The main advantage of this framework is its modularity. This feature allows us to run

different CAPIF services and mix them directly with other services as database with

relative ease.

Robot framework: The Robot Framework is a free and open automation testing

framework. It is suitable for test automation as well as robotic process automation (RPA).

We have implemented a CAPIF Test plan that covers all CAPIF APIs implemented with

all possible responses, both successful ones and failure responses.

Easy RSA: Easy RSA Certification Authority has been integrated into CAPIF

implementation, to enable CAPIF Core Function to generate its own CA Root and

Certificates for TLS mutual authentication. API Invokers and API Providers receive their

own certificate during the CAPIF onboarding process. They use this certificate for

establishing TLS security layer with CAPIF Core Function. API Invokers and API

Providers verify CAPIF Core Function certificates using the CA Root generated by

CAPIF Core Function, and CAPIF validates API Invokers and API providers validating

the Certificate presented in TLS negotiation.

OAuth2.0: OAuth2.0 is an open standard for authorization and is based on the concept
of access tokens. A token is a string that the OAuth client uses to make requests to the
resource server. Once a component registers and authenticates itself with credentials,
CAPIF core function issues an access token. The component can use that token, within
its requests, to access specific resource APIs. As in OAuth, various formats for the tokens
can be supported, 3GPP specifications propose JSON Web Token (JWT) as the most

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

54

suitable format for token exchange in CAPIF ecosystem. JWT format offers stateless
tokens, thus, saving memory on server side as the session information is not stored, and
also ensures authenticity of the client by data signing. JWT is the mandatory format of
tokens in this standard, and the tokens are stored in a cookie.
Docker: Docker is an open-source containerization tool for building, running, and

managing containers, where software is deployed. We use Docker to build each service

of the CAPIF Core Function. In this way, we can keep each CAPIF service development

isolated from other services. This design pattern is known as a micro-services-oriented

architecture and is widely used in software development due to its innumerable

advantages like better fault isolation and improved scalability, among others.

6.1.4 TSN FrontEnd

The TSN FrontEnd has been designed as a unified, re-usable front-end for requesting

network configurations related to TSN and deterministic communication. The TSN

FrontEnd can expose a set of pre-defined configuration, which can then be customized

by end-users. On every configuration request, the TSN FrontEnd pre-process the

requirements and generates a set of values that are then sent to the TSN AF, which is in

charge of making use of the actual hardware in order to achieve the requested parameters.

6.1.4.1 TSN FrontEnd implementation

The TSN AF has been implemented as a containerized Flask application, easing the

deployment. It has been published as open-source software (Apache 2.0 license) and is

available in the EVOLVED-5G GitHub organization [33].

The application acts as a server that exposes an API with the following endpoints (Table

5):
Table 5 TSN FrontEnd API endpoints

API prefix: /tsn/api/v1

Endpoint Method Description

/profile

GET

When used without parameters the endpoint returns a list of

available profiles, with the following format:
{"profiles": ["<profile1>", "<profile2>", ...,

"best_effort"]}

When used with the name=<profile_name> URL

parameter, the endpoint returns the default configuration

values of the selected profile, with the format:
{"<profile_name>": {"<parameter1>": <value1>,

"<parameter2>": <value2>, ...}}

/apply

POST

Applies the specified configuration to the selected traffic

identifier. The endpoint expects to receive a payload with

the format:
{"identifier": <identifier>, "profile": <profile>,

"overrides": <overrides>}

Where:

- Identifier is a unique identifier defined by the user

for the configuration.

- profile is the name of the base profile to use. The

values in this profile will be used as default, when

not overridden.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

55

- overrides is a dictionary of values that will be

overridden from the used profile. May be empty.

/clear

POST

Disables the configuration applied by a previous usage of

/apply. The endpoint expects to receive a payload with the

format:
{"identifier": <identifier>, "token": <token>}

Where:

- identifier is the same unique identifier used when

requesting the configuration through /apply

token is a value returned by the TSN AF as part of the

response to the /apply request.

End users make use of the /profile endpoints in order to receive information about the

available profiles already pre-configured. Then, they can make use of the /apply endpoint

for requesting a particular configuration.

On a successful request, the /apply will reply with a payload with the following format:

{"message": "Success", "token": "<token>"}

The token included is not related to the authentication procedure implemented through

the CAPIF integration but, is a separate measure that ensures that other third parties with

access to the TSN FrontEnd cannot interact with the configuration of other experimenters

only by knowing the identifier of the configuration. This extra validation is included

because the TSN FrontEnd can be deployed without any CAPIF integration, if decided

by testbed administrators.

After a configuration is no longer necessary, end users can disable it by making use of

the /clear endpoint.

6.1.4.1.1 Integration with the TSN infrastructure

In order to increase security and to allow re-usability of the TSN FrontEnd in different

environments, the TSN FrontEnd does not have access to the TSN hardware. Further, the

TSN FrontEnd is also prepared to work on environments where no TSN capabilities are

available.

This is achieved by the definition of a separate entity, the TSN Application Function (AF),

that is in charge of accessing the equipment and apply the configuration by any means

necessary, and which only needs to expose a small API that can be used by the TSN

FrontEnd in order to send the requested configuration values. Information about this API

can be seen in Table 6.

Table 6 TSN AF API endpoints

Endpoint Method Description

/apply POST

Applies the specified configuration. The expected

payload has the following format:
{"identifier": <identifier>, "token": <token>, "values": <values>}

Where:

- identifier is a unique configuration identifier.

- token is a unique token related to the

configuration.

- values is a dictionary of configuration values.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

56

/clear

POST

Disables the configuration applied by a previous usage

of /apply. For convenience, the same payload used for

/apply is sent.

In order to keep the implementations as open and extendable as possible, there are no

preconceptions about how the TSN AF makes use of the information sent in the payload,

or the specific values included in the values dictionary. It is only expected that the TSN

AF will reply with

- HTTP status 200 on successful requests.

- Any other status code along with a JSON payload that includes a detail message

indicating the issue, in case of a failed request.

Additionally, the TSN FrontEnd can work in BackEnd-less mode, for cases where the

underlying infrastructure has no access to TSN capabilities. In this case, the TSN

FrontEnd can listen for requests, but will only accept best-effort configurations.

6.1.5 NEF Emulator evolution

Beyond the exposure capabilities, NEF Emulator has been evolved to conform with the

other components of the ecosystem. NEF Emulator is compatible with CAPIF Core

Function which adds an extra layer of protection to the network infrastructure, preventing

direct access by untrusted parties but also ensuring the discoverability of the services. In

addition, NEF Emulator’s microservice composition is restructured with the addition of

a reverse proxy (NGINX) that handles all the traffic in a secure way. The use of RESTful

APIs throughout all layers of the simulator allows for most components, such as cells,

UEs, Northbound APIs, OAuth2 tokens, and more, to be accessible as APIs. This enables

third-party applications, proprietary equipment, and AL/ML services to interact with the

components of each layer, providing flexibility and ease of integration. To demonstrate

the use of RESTful APIs and third-party applications, an Android companion app has

been developed to simulate the movement of a UE by dynamically changing its

coordinates.

6.1.5.1 Companion application

The companion app provides the GPS coordinates of the UE to the NEF emulator, which

allows for dynamic movement of the UE. It has been specifically designed for Android

devices and requires GPS availability (outdoors) as well as connectivity to the NEF

emulator via either Wi-Fi or a mobile network (Figure 33).

The configuration details for the companion app are described below. Note here that a

convention is to use the “companionapp.com” as the domain part of the external identifier.

• User ID: The external identifier of the UE in NEF emulator. This value should

always be “<somevalue>@companionapp.com”

• NEF emulator hostname: The hostname or IP address of the deployed NEF

emulator

• NEF emulator port: The port number of the deployed NEF emulator

• NEF emulator username: The username of the deployed NEF emulator to acquire

the login token

• NEF emulator password: The password of the deployed NEF emulator to acquire

the login token

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

57

Figure 33 Companion App

After saving the values and the "START TRACKING" button is pressed, the companion

app will begin sending GPS coordinates to the NEF emulator (periodically every 10

seconds). Additionally, the app will continue to send GPS coordinates in the background,

which is indicated by a permanent notification as depicted in Figure 33.

Communication with the NEF Emulator is facilitated through the following APIs:

1. Login Access Token API (HTTP POST): This API is used to obtain the login

token for accessing the NEF Emulator.

2. Create UE API (HTTP POST): This API is used to obtain the SUPI of the UE. If

the external identifier provided does not exist, a new one is generated randomly.

If it already exists, the existing one is returned.

3. Update UE API (HTTP PUT): This API is used continuously by the app to update

the GPS coordinates of the UE being tracked, as long as tracking is enabled.

6.1.5.2 NEF Emulator Implementation

As mentioned, the addition of a reverse proxy (NGINX) is an important aspect of the

evolution of the NEF emulator since it covers most of the security requirements (Figure

34). NEF Emulator’s server-side authentication mechanism relies on self-signed

certificates created using OpenSSL protocol, during the build process (i.e., the certificate

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

58

is signed by the server's private key). The TLS handshake procedure is a built-in feature

of the NGINX solution, while the authorisation of the network apps is achieved with jwt

tokens generated from NEF (when NEF is used without CAPIF).

In Figure 34, the interaction with a network app and the NEF Emulator through the

reverse-proxy is demonstrated. During deployment (i.e., docker compose up), the

exposed ports of the container for both HTTP and HTTPs can be dynamically configured

through environmental variables. The ports of the docker network that are assigned in the

reverse proxy service are always 80 for HTTP and 443 for HTTPS protocols. If a network

app sends an HTTP request to the reverse proxy (step 1), subsequently the request then is

redirected with a 301 Moved Permanently response (step 2) to a secure HTTPS request

(step 3) to the proxy service. In case the network app uses HTTPS directly, steps 1-2 are

omitted.

Figure 34 NEF Emulator

In conclusion, NEF Emulator will keep upgrading to ensure its compliance with the latest

versions of the various technologies it depends on, such as Python, Docker Compose, and

CAPIF, among others.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

59

7 CONCLUSION
This deliverable describes final results of activities performed in tasks T3.1, T3.2 and

T3.3, during the second period of WP3, concretely from M13 to M28.

This deliverable presents a final upgrade of Deliverable D3.1 and includes additional

information about the current EVOLVED-5G architecture and the different environments

and processes the Network App will follow.

Task 3.1 aims to design and implement the development tools for the workspace

environment. Such tools, offers a set of functionalities and features to create, verify and

launch the validation phase of the Network Apps. In this deliverable, it is described the

updates for the final releases of the different tools involved in the Workspace environment

including security features as well as new implementations as TSN.

Task 3.2 focuses on the design of the validation environment. In this environment the

developer’ Network Application is challenged among different validation tools

implemented to validate the feasibility of the Network App in the EVOLVED-5G

framework towards one of the final phase (certification). Furthermore, this task will

provide to developers with a report notifying weather their Network App has successfully

pass or not the validation phase, in case of a positive report, the validation phase is in

charge to store the validated Network App in a repository for the certification phase.

Task 3.3 supports the integrations between all the phases for the Network App. In D3.1

the requirements where fed by WP2 while now, due to requirements and updates in the

implementations, the architecture has evolved, and the modification are reflected in this

deliverable. Also, feedback from WP4 and WP5 is required to align the architecture with

the requirements coming from developers and certification entity. Finally, the

infrastructure evolution is considered in this Task, describing and presenting all the new

upgrades related to Athens and Málaga platform in this deliverable.

Regarding next steps, it must be considered that some other modules, will also be part of

the integrated EVOLVED-5G platform (i.e., the Certification environment and the

Marketplace) but are designed and developed as part of T3.4, and thus, they will be

covered in deliverable D3.4, to be released in M30.

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

60

REFERENCES
[1] EVOLVED-5G WIKI, from https://wiki.evolved-5g.eu/

[2] EVOLVED-5G FORUM from https://forum.evolved-5g.eu/

[3] EVOLVED-5G Library from https://forum.evolved-5g.eu/c/library/

[4] Vue.js - The Progressive JavaScript Framework | Vue.js, from https://vuejs.org

[5] Node.js, from https://nodejs.org/en

[6] PostgreSQL: The world’s most advanced open-source database, from

https://www.postgresql.org/

[7] MySQL, from https://www.mysql.com/

[8] MariaDB Foundation - MariaDB.org, from https://mariadb.org/

[9] SQLite Home Page, from https://www.sqlite.org/index.html

[10] GraphQL | A query language for your API, from https://graphql.org/

[11] Git, from https://git-scm.com/

[12] Analytics, from https://analytics.google.com/analytics/web/

[13] Slack is your productivity platform | Slack, from https://slack.com/

[14] Manage Your Team’s Projects From Anywhere | Trello, from https://trello.com/

[15] EVOLVED-5G, Deliverable 3.1 “Implementations and integrations towards

EVOLVED-5G framework realisation (intermediate)” from https://evolved-

5g.eu/wp-content/uploads/2022/01/EVOLVED-5G-D3.1-v1.0.pdf

[16] EVOLVED-5G, from https://github.com/EVOLVED-5G/

[17] EVOLVED-5G, Deliverable 5.3 “NetApp Certification and Release to

Marketplace (intermediate)” from https://evolved-5g.eu/wp-

content/uploads/2023/02/EVOLVED-5G-D5.3-Final_version.pdf

[18] Common API Framework for 3GPP Northbound APIs (3GPP TS 29.222 version

16.5.0 Release 16).

https://www.etsi.org/deliver/etsi_ts/129200_129299/129222/16.05.00_60/ts_129

222v160500p.pdf

[19] 5G System; Network Exposure Function Northbound APIs; Stage 3 (3GPP TS

29.522 version 16.4.0 Release 16).

https://www.etsi.org/deliver/etsi_ts/129500_129599/129522/16.04.00_60/ts_129

522v160400p.pdf

[20] Time-Sensitive Networking (TSN) Task Group, from https://1.ieee802.org/tsn/

[21] 3GPP TS 23.501 V16.16.0 (2023-03) 3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects; System architecture

for the 5G System (5GS); Stage 2 (Release 16).

https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-gg0.zip

[22] 3GPP TS 23.501 V17.8.0 (2023-03) 3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects; System architecture

for the 5G System (5GS); Stage 2 (Release 17).

https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-h80.zip

[23] Procedures for the 5G System (5GS) (3GPP TS 23.502 version 16.7.0 Release

16).

https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/16.07.00_60/ts_123

502v160700p.pdf

[24] System architecture for the 5G System (5GS) (3GPP TS 23.501 version 17.5.0

Release 17).

https://wiki.evolved-5g.eu/
https://forum.evolved-5g.eu/
https://forum.evolved-5g.eu/c/library/
https://vuejs.org/
https://nodejs.org/en
https://www.postgresql.org/
https://www.mysql.com/
https://mariadb.org/
https://www.sqlite.org/index.html
https://graphql.org/
https://git-scm.com/
https://analytics.google.com/analytics/web/
https://slack.com/
https://trello.com/
https://evolved-5g.eu/wp-content/uploads/2022/01/EVOLVED-5G-D3.1-v1.0.pdf
https://evolved-5g.eu/wp-content/uploads/2022/01/EVOLVED-5G-D3.1-v1.0.pdf
https://github.com/EVOLVED-5G/
https://evolved-5g.eu/wp-content/uploads/2023/02/EVOLVED-5G-D5.3-Final_version.pdf
https://evolved-5g.eu/wp-content/uploads/2023/02/EVOLVED-5G-D5.3-Final_version.pdf
https://www.etsi.org/deliver/etsi_ts/129200_129299/129222/16.05.00_60/ts_129222v160500p.pdf
https://www.etsi.org/deliver/etsi_ts/129200_129299/129222/16.05.00_60/ts_129222v160500p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129522/16.04.00_60/ts_129522v160400p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129522/16.04.00_60/ts_129522v160400p.pdf
https://1.ieee802.org/tsn/
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/16.07.00_60/ts_123502v160700p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/16.07.00_60/ts_123502v160700p.pdf

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

61

https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.05.00_60/ts_123

501v170500p.pdf

[25] Terraform|HashiCorp Developer, from https://developer.hashicorp.com/terraform

[26] Helm, from https://helm.sh/

[27] EVOLVED-5G/SDK-CLI: SDK-CLI for EVOLVED-5G H2020 project, from

https://github.com/EVOLVED-5G/SDK-CLI

[28] SDK-CLI/netapp_capif_connector_examples.py at master · EVOLVED-

5G/SDK-CLI · GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/netapp_capif_connector_examples.py

[29] SDK-CLI/netapp_service_discovery_examples.py at master · EVOLVED-

5G/SDK-CLI · GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/netapp_service_discovery_examples.py

[30] SDK-CLI/location_subscriber_examples.py at master · EVOLVED-5G/SDK-

CLI · GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/location_subscriber_examples.py

[31] SDK-CLI/connection_monitor_examples.py at master · EVOLVED-5G/SDK-

CLI · GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/connection_monitor_examples.py

[32] SDK-CLI/ qos_awereness_examples.py at master · EVOLVED-5G/SDK-CLI ·

GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/qos_awereness_examples.py

[33] EVOLVED-5G/TSN_FrontEnd, from https://github.com/EVOLVED-

5G/TSN_FrontEnd

[34] SDK-CLI/tsn_manager_examples.py at master · EVOLVED-5G/SDK-CLI ·

GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/tsn_manager_examples.py

[35] SDK-CLI/ tsn_capif_connector_examples.py at master · EVOLVED-5G/SDK-

CLI · GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/tsn_capif_connector_examples.py

[36] EVOLVED-5G/dummy-network-application, from

https://github.com/EVOLVED-5G/dummy-network-application

[37] SDK-CLI/netapp_capif_connector_config_file.json at master · EVOLVED-

5G/SDK-CLI · GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/netapp_capif_config/netapp_capif_connector_config

_file.json

[38] Jenkins - Market Share, Competitor Insights in Continuous Integration And

Delivery, from https://6sense.com/tech/continuos-integration/jenkins-market-

share

[39] Securing Jenkins, from https://www.jenkins.io/doc/book/security/

[40] GitHub security features - GitHub Docs, from https://docs.github.com/en/code-

security/getting-started/github-security-features

[41] VulnDB, from https://vulndb.cyberriskanalytics.com/

[42] OpenShift Security from https://www.redhat.com/rhdc/managed-files/cl-

openshift-security-guide-ebook-us287757-202103.pdf

[43] EVOLVED-5G, Deliverable 3.2 “NetApp Certification Tools and Marketplace

development(intermediate)” from https://evolved-5g.eu/wp-

content/uploads/2022/09/EVOLVED-5G-D3.2_FINAL.pdf

https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.05.00_60/ts_123501v170500p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.05.00_60/ts_123501v170500p.pdf
https://developer.hashicorp.com/terraform
https://helm.sh/
https://github.com/EVOLVED-5G/SDK-CLI
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/netapp_capif_connector_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/netapp_capif_connector_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/netapp_service_discovery_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/netapp_service_discovery_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/location_subscriber_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/location_subscriber_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/connection_monitor_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/connection_monitor_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/qos_awereness_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/qos_awereness_examples.py
https://github.com/EVOLVED-5G/TSN_FrontEnd
https://github.com/EVOLVED-5G/TSN_FrontEnd
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/tsn_manager_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/tsn_manager_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/tsn_capif_connector_examples.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/tsn_capif_connector_examples.py
https://github.com/EVOLVED-5G/dummy-netapp
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/netapp_capif_config/netapp_capif_connector_config_file.json
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/netapp_capif_config/netapp_capif_connector_config_file.json
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/netapp_capif_config/netapp_capif_connector_config_file.json
https://6sense.com/tech/continuos-integration/jenkins-market-share
https://6sense.com/tech/continuos-integration/jenkins-market-share
https://www.jenkins.io/doc/book/security/
https://docs.github.com/en/code-security/getting-started/github-security-features
https://docs.github.com/en/code-security/getting-started/github-security-features
https://vulndb.cyberriskanalytics.com/
https://www.redhat.com/rhdc/managed-files/cl-openshift-security-guide-ebook-us287757-202103.pdf
https://www.redhat.com/rhdc/managed-files/cl-openshift-security-guide-ebook-us287757-202103.pdf
https://evolved-5g.eu/wp-content/uploads/2022/09/EVOLVED-5G-D3.2_FINAL.pdf
https://evolved-5g.eu/wp-content/uploads/2022/09/EVOLVED-5G-D3.2_FINAL.pdf

D3.3 Implementations and integrations towards EVOLVED-5G

framework realisation (final) GA Number 101016608

62

[44] Security architecture and procedures for 5G System (3GPP TS 33.501 version

17.5.0 Release 17),

https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/17.05.00_60/ts_133

501v170500p.pdf

[45] Network Domain Security (NDS); Authentication Framework (AF) (3GPP TS

33.310 version 17.3.0 Release 17),

https://www.etsi.org/deliver/etsi_ts/133300_133399/133310/17.03.00_60/ts_133

310v170300p.pdf

[46] EVOLVED-5G, Deliverable 2.3 “Overall framework for NetApp development

and evaluation” from https://evolved-5g.eu/wp-

content/uploads/2022/12/EVOLVED-5G_D2.3.pdf

[47] Debricked - Your Partner in Open Source, from https://debricked.com/

[48] GitHub - EVOLVED-5G/ELCM: Experiment Lifecycle Manager. Developed by

the University of Málaga, from https://github.com/EVOLVED-5G/ELCM

[49] OpenTAP, from https://opentap.io/

[50] Robot Framework, from https://robotframework.org/

[51] EVOLVED-5G, Deliverable 2.2 “Design of NetApps development and evaluation

environments” from https://evolved-5g.eu/wp-

content/uploads/2021/11/EVOLVED-5G-D2.2-v1.0_final.pdf

[52] MetalLB, bare metal load-balancer for Kubernetes, from

https://metallb.universe.tf/

[53] Release CAPIF Release 2.0 · EVOLVED-5G/CAPIF_API_Services · GitHub,

from https://github.com/EVOLVED-5G/CAPIF_API_Services/releases/tag/2.0

[54] Easy RSA, from https://easy-rsa.readthedocs.io/en/latest/

[55] Release CAPIF Release 3.0 · EVOLVED-5G/CAPIF_API_Services · GitHub,

from https://github.com/EVOLVED-5G/CAPIF_API_Services/releases/tag/3.0

[56] 5G APIs · GitLab, from https://forge.3gpp.org/rep/all/5G_APIs#capif-common-

api-framework

[57] EVOLVED-5G, Deliverable 2.1 “Overall Framework Design and Industry 4.0

Requirements” from https://evolved-5g.eu/wp-

content/uploads/2021/11/EVOLVED-5G-D2.1_v1.4.pdf

[58] EVOLVED-5G/NetworkApp-Template, from https://github.com/EVOLVED-

5G/NetworkApp-template

[59] SDK-CLI/nef_logger_and_audit_example.py at master · EVOLVED-5G/SDK-

CLI · GitHub, from https://github.com/EVOLVED-5G/SDK-

CLI/blob/master/examples/nef_logger_and_audit_example.py

[60] Open5GS from https://open5gs.org/

[61] SDK-CLI/HISTORY.rst at master EVOLVED-5G/SDK-CLI GitHub, from

https://github.com/EVOLVED-5G/SDK-CLI/blob/master/HISTORY.rst

[62] EVOLVED-5G, Deliverable 6.1 “Training Material and SMEs and Startup

Acceleration Program Activities (Intermediate)” from https://evolved-5g.eu/wp-

content/uploads/2022/09/EVOLVED-5G-D6.1.pdf

[63] Robot Framework, from https://robotframework.org/

https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/17.05.00_60/ts_133501v170500p.pdf
https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/17.05.00_60/ts_133501v170500p.pdf
https://www.etsi.org/deliver/etsi_ts/133300_133399/133310/17.03.00_60/ts_133310v170300p.pdf
https://www.etsi.org/deliver/etsi_ts/133300_133399/133310/17.03.00_60/ts_133310v170300p.pdf
https://evolved-5g.eu/wp-content/uploads/2022/12/EVOLVED-5G_D2.3.pdf
https://evolved-5g.eu/wp-content/uploads/2022/12/EVOLVED-5G_D2.3.pdf
https://debricked.com/
https://github.com/EVOLVED-5G/ELCM
https://opentap.io/
https://robotframework.org/
https://evolved-5g.eu/wp-content/uploads/2021/11/EVOLVED-5G-D2.2-v1.0_final.pdf
https://evolved-5g.eu/wp-content/uploads/2021/11/EVOLVED-5G-D2.2-v1.0_final.pdf
https://metallb.universe.tf/
https://github.com/EVOLVED-5G/CAPIF_API_Services/releases/tag/2.0
https://easy-rsa.readthedocs.io/en/latest/
https://github.com/EVOLVED-5G/CAPIF_API_Services/releases/tag/3.0
https://forge.3gpp.org/rep/all/5G_APIs#capif-common-api-framework
https://forge.3gpp.org/rep/all/5G_APIs#capif-common-api-framework
https://evolved-5g.eu/wp-content/uploads/2021/11/EVOLVED-5G-D2.1_v1.4.pdf
https://evolved-5g.eu/wp-content/uploads/2021/11/EVOLVED-5G-D2.1_v1.4.pdf
https://github.com/EVOLVED-5G/NetworkApp-template
https://github.com/EVOLVED-5G/NetworkApp-template
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/nef_logger_and_audit_example.py
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/examples/nef_logger_and_audit_example.py
https://open5gs.org/
https://github.com/EVOLVED-5G/SDK-CLI/blob/master/HISTORY.rst
https://evolved-5g.eu/wp-content/uploads/2022/09/EVOLVED-5G-D6.1.pdf
https://evolved-5g.eu/wp-content/uploads/2022/09/EVOLVED-5G-D6.1.pdf
https://robotframework.org/

